Stabbing circles for some sets of Delaunay segments

Autor: Claverol Aguas, Mercè, Khramtcova, Elena, Papadopoulou, Evanthia, Saumell, Maria, Seara Ojea, Carlos
Přispěvatelé: Universitat Politècnica de Catalunya. Departament de Matemàtiques, Universitat Politècnica de Catalunya. DCCG - Grup de recerca en geometria computacional, combinatoria i discreta
Jazyk: angličtina
Rok vydání: 2016
Předmět:
Zdroj: UPCommons. Portal del coneixement obert de la UPC
Universitat Politècnica de Catalunya (UPC)
Recercat. Dipósit de la Recerca de Catalunya
instname
Popis: Let S be a set of n segments in the plane such that, for every segment, its two endpoints are adjacent in the Delaunay triangulation of the set of endpoints of all segments in S. Our goal is to compute all the combinatorially different stabbing circles for S, and the ones with maximum and minimum radius. We exploit a recent result to solve this problem in O(n log n) in two particular cases: (i) all segments in S are parallel; (ii) all segments in S have the same length. We also show that the problem of computing the stabbing circle of minimum radius of a set of n parallel segments of equal length (not necessarily satisfying the Delaunay condition) has an Omega(n log n) lower bound.
Databáze: OpenAIRE