Técnicas de estimación AR usando distintas metodologías de orden superior en ambientes reales

Autor: Salavedra Molí, Josep, Masgrau Gómez, Enrique José, Moreno Bilbao, M. Asunción, Vallverdú Bayés, Sisco
Přispěvatelé: Universitat Politècnica de Catalunya. Departament de Teoria del Senyal i Comunicacions, Universitat Politècnica de Catalunya. VEU - Grup de Tractament de la Parla
Jazyk: Spanish; Castilian
Rok vydání: 1995
Předmět:
Zdroj: UPCommons. Portal del coneixement obert de la UPC
Universitat Politècnica de Catalunya (UPC)
Recercat. Dipósit de la Recerca de Catalunya
instname
Popis: Some Speech Enhancement algorithms based on the iterative Wiener filtering Method due to LimOppenheim [2] are presented. In the original Lim-Oppenheim algorithm, AR spectral estimation of speech is carried out using a second-order analysis, but our algorithms consider an AR estimation by means of cumulant analysis. This work extends some preceding papers due to the authors. Information of previous speech frames is taken to initiate speech AR modeling of the current frame and, so, two parameters are introduced to dessign Wiener Filter at first iteration of every frame. Another algorithm obtains speech AR estimation in the autocorrelation domain. Both algorithms are compared to classical second-order algorithm (AR2) and third-onler cumulant-based algorithm (AR3), when car noise disturbs clean speech signal. A detailed study shows that boths techniques significantly increase noise suppression after first iteration processing and, therefore, convergence speed of this iterative algorithm is strongly accelerated.
Databáze: OpenAIRE