Knowledge representation to enable high-level planning in cloth manipulation tasks

Autor: Garcia Camacho, Irene, Borràs Sol, Júlia, Alenyà Ribas, Guillem
Přispěvatelé: European Commission, Agencia Estatal de Investigación (España), Ministerio de Ciencia, Innovación y Universidades (España), Consejo Superior de Investigaciones Científicas (España), Universitat Politècnica de Catalunya. Doctorat en Automàtica, Robòtica i Visió, Institut de Robòtica i Informàtica Industrial, Universitat Politècnica de Catalunya. ROBiri - Grup de Percepció i Manipulació Robotitzada de l'IRI
Rok vydání: 2022
Předmět:
Popis: Trabajo presentado en la ICAPS Workshop on Knowledge Engineering for Planning and Scheduling, celebrada en Singapore, el 15 de junio de 2022
Cloth manipulation is very relevant for domestic robotic tasks, but it presents many challenges due to the complexity of representing, recognizing and predicting the behaviour of cloth under manipulation. In this work, we propose a generic, compact and simplified representation of the states of cloth manipulation that allows for representing tasks as sequences of states and transitions semantically. We also define a Cloth Manipulation Graph that encodes all the strategies to accomplish a task. Our novel representation is used to encode two different cloth manipulation tasks, learned from an experiment with human subjects manipulating clothes with video data. We show how our simplified representation allows to obtain a map of meaningful steps that can serve to describe cloth manipulation tasks as domain models in PDDL, enabling high-level planning. Finally, we discuss on the existing skills that could enable the sensory motor grounding and the low-level execution of the plan.
The research leading to these results receives funding from the European Research Council (ERC) from the European Union Horizon 2020 Programme under grant agreement no. 741930 (CLOTHILDE: CLOTH manIpulation Learning from DEmonstrations); by MCIN/ AEI /10.13039/501100011033, Spain, under the project CHLOE-GRAPH (PID2020-119244GB-I00); by MCIN/ AEI /10.13039/501100011033, Spain, and by the “European Union NextGenerationEU/PRTR, Spain, under the project COHERENT (PCI2020-120718-2); and by the European Commission- NextGenerationEU, through CSIC’s Thematic Platforms (PTI+ Neuro-Aging).
Databáze: OpenAIRE