Modified Clebsch-Gordan-type expansions for products of discrete hypergeometric polynomials

Autor: Álvarez Nodarse, Renato, Yáñez García, Rafael José, Sánchez Dehesa, Jesús
Přispěvatelé: Universidad de Sevilla. Departamento de Análisis Matemático, Universidad de Sevilla. FQM262: Teoria de la Aproximacion, Dirección General de Enseñanza Superior. España, Junta de Andalucía
Rok vydání: 1998
Předmět:
Zdroj: idUS. Depósito de Investigación de la Universidad de Sevilla
instname
Popis: Starting from the second-order difference hypergeometric equation satisfied by the set of discrete orthogonal polynomials ∗pn∗, we find the analytical expressions of the expansion coefficients of any polynomial rm(x) and of the product rm(x)qj(x) in series of the set ∗pn∗. These coefficients are given in terms of the polynomial coefficients of the second-order difference equations satisfied by the involved discrete hypergeometric polynomials. Here qj(x) denotes an arbitrary discrete hypergeometric polynomial of degree j. The particular cases in which ∗rm∗ corresponds to the non-orthogonal families ∗xm∗, the rising factorials or Pochhammer polynomials ∗(x)m∗ and the falling factorial or Stirling polynomials ∗x[m]∗ are considered in detail. The connection problem between discrete hypergeometric polynomials, which here corresponds to the product case with m = 0, is also studied and its complete solution for all the classical discrete orthogonal hypergeometric (CDOH) polynomials is given. Also, the inversion problems of CDOH polynomials associated to the three aforementioned nonorthogonal families are solved. Dirección General de Enseñanza Superior Junta de Andalucía
Databáze: OpenAIRE