Identités de type Rogers-Ramanujan : preuves bijectives et approche à la théorie de Lie

Autor: ISAAC KONAN
Přispěvatelé: Institut de Recherche en Informatique Fondamentale (IRIF (UMR_8243)), Centre National de la Recherche Scientifique (CNRS)-Université de Paris (UP), Université de Paris, Jeremy Lovejoy, STAR, ABES
Jazyk: angličtina
Rok vydání: 2020
Předmět:
Zdroj: Combinatorics [math.CO]. Université de Paris, 2020. English. ⟨NNT : 2020UNIP7087⟩
HAL
Popis: The topic of this thesis belongs to the theory of integer partitions, at the intersection of combinatorics and number theory. In particular, we study Rogers-Ramanujan type identities in the framework of the method of weighted words. This method revisited allows us to introduce new combinatorial objects beyond the classical notion of integer partitions: the generalized colored partitions. Using these combinatorial objects, we establish new Rogers-Ramanujan identities via two different approaches.The first approach consists of a combinatorial proof, essentially bijective, of the studied identities. This approach allowed us to establish some identities generalizing many important identities of the theory of integer partitions : Schur’s identity and Göllnitz’ identity, Glaisher’s identity generalizing Euler’s identity, the identities of Siladić, of Primc and of Capparelli coming from the representation theory of affine Lie algebras. The second approach uses the theory of perfect crystals, coming from the representation theory of affine Lie algebras. We view the characters of standard representations as some identities on the generalized colored partitions. In particular, this approach allows us to establish simple formulas for the characters of all the level one standard representations of type A(1) n-1, A(2) 2n , D(2) n+1, A(2) 2n-1, B(1) n , D(1) n .
Cette thèse relève de la théorie des partitions d’entiers, à l’intersection de la combinatoire et de la théorie de nombres. En particulier, nous étudions les identités de type Rogers-Ramanujan sous le spectre de la méthode des mots pondérés. Une révision de cette méthode nous permet d’introduire de nouveaux objets combinatoires au delà de la notion classique de partitions d’entiers: partitions colorées généralisées. À l’aide de ces nouveaux éléments, nous établissons de nouvelles identités de type Rogers-Ramanujanvia deux approches différentes. La première approche consiste en une preuve combinatoire, essentiellement bijective, des identités étudiées. Cette approche nous a ainsi permis d’établir des identités généralisant plusieurs identités importantes de la théorie: l’identité de Schur et l’identité Göllnitz, l’identité de Glaisher généralisant l’identité d’Euler, les identités de Siladić, de Primc et de Capparelli issues de la théorie des représentations de algèbres de Lie affines. La deuxième approche fait appel à la théorie des cristaux parfaits, issue de la théorie des représentations des algèbres de Lie affines. Nous interprétons ainsi le caractère des représentations standards comme des identités de partitions d’entiers colorées généralisées. En particulier, cette approche permet d’établir des formules assez simplifiées du caractère pour toutes les représentations standards de niveau 1 des types affines A(1) n-1, A(2) 2n , D(2) n+1, A(2) 2n-1, B(1) n , D(1) n .
Databáze: OpenAIRE