A Bayesian non-parametric approach to asymmetric dynamic conditional correlation model with application to portfolio selection
Autor: | Virbickaite, Audrone, Ausín Olivera, María Concepción, Galeano San Miguel, Pedro |
---|---|
Přispěvatelé: | Universidad Carlos III de Madrid. Departamento de Estadística |
Jazyk: | angličtina |
Rok vydání: | 2013 |
Předmět: | |
Zdroj: | e-Archivo. Repositorio Institucional de la Universidad Carlos III de Madrid instname |
Popis: | We use an asymmetric dynamic conditional correlation (ADCC) GJR-GARCH model to estimate the time-varying volatilities of financial returns. The ADCC-GJR-GARCH model takes into consideration the asymmetries in individual assets volatilities, as well as in the correlations. The errors are modeled using a flexible location-scale mixture of infinite Gaussian distributions and the inference and estimation is carried out by relying on Bayesian non-parametrics. Finally, we carry out a simulation study to illustrate the flexibility of the new method and present a financial application using Apple and NASDAQ Industrial index data to solve a portfolio allocation problem The first and second authors are grateful for the financial support from MEC grant ECO2011-25706. The third author acknowledges financial support from MEC grant ECO2012-38442 |
Databáze: | OpenAIRE |
Externí odkaz: |