A symbolic-numeric method to analyse nonlinear differential equations in Fourier domain

Autor: Ratier, N., Bruniaux., M.
Přispěvatelé: Franche-Comté Électronique Mécanique, Thermique et Optique - Sciences et Technologies (UMR 6174) (FEMTO-ST), Université de Technologie de Belfort-Montbeliard (UTBM)-Ecole Nationale Supérieure de Mécanique et des Microtechniques (ENSMM)-Université de Franche-Comté (UFC), Université Bourgogne Franche-Comté [COMUE] (UBFC)-Université Bourgogne Franche-Comté [COMUE] (UBFC)-Centre National de la Recherche Scientifique (CNRS)
Jazyk: angličtina
Rok vydání: 2005
Předmět:
Zdroj: Proc. of the 7th WSEAS International Conference on Mathematical Methods and Computational Techniques in Electrical Engineering
7th WSEAS International Conference on Mathematical Methods and Computational Techniques in Electrical Engineering
7th WSEAS International Conference on Mathematical Methods and Computational Techniques in Electrical Engineering, Oct 2005, Sofia, Bulgaria. pp.208-213
Oct 2005, p. 208-213
Popis: International audience; This paper presents a method to express, in symbolic form, any system of algebrico--differential equations into a nonlinear system of Fourier coefficient of the unknowns. The solution of the nonlinear equations generated in the last step of the method gives an approximation of the steady--state solution of the differential equations. Main applications should be found in the domain of ultra--stable oscillator circuits. The paper explains how to face with the two main difficulties of this symbolic computation: the processing of the nonlinear components and the control of the large number of coefficients. The solution proposed is inspired from compiler construction techniques.
Databáze: OpenAIRE