Contribution to the interconnection of active components integrated in laminated substrates : contribution of micro and nano-structured interfaces
Autor: | Djuric, Bojan |
---|---|
Přispěvatelé: | STAR, ABES, LAboratoire PLasma et Conversion d'Energie (LAPLACE), Centre National de la Recherche Scientifique (CNRS)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Institut National Polytechnique (Toulouse) (Toulouse INP), Université Fédérale Toulouse Midi-Pyrénées, Université Paul Sabatier - Toulouse III, Jean-Pascal Cambronne, Vincent Bley |
Jazyk: | francouzština |
Rok vydání: | 2020 |
Předmět: | |
Zdroj: | Electronique. Université Paul Sabatier-Toulouse III, 2020. Français. ⟨NNT : 2020TOU30070⟩ |
Popis: | The power converters hold a central position in electrical engineering. The power ratings are increasing and the converters have to meet these needs in compact systems. For example, the current power density of commercialized power converters of 2 kW for photovoltaic application is around 1 kW.l-1, whereas in the "Little Box Challenge" organized by Google and IEEE reached 12 kW.l-1. This improvement is mainly explained by using wide band-gap (WBG) semiconductor devices based on silicon carbide (SiC) and gallium nitride (GaN) materials that permit significantly higher switching frequencies. However, the associated shorter switching times are only possible when all stray elements in the package are minimized in order to take all the benefit of these new components. The parasitic elements, and the package stray inductances in particular, are source of losses which reduce the efficiency and also cause less reliable operation and EMI noise. This is fundamentally difficult to achieve with the popular packages using wire-bonded interconnections. In some application, the WBG devices are expected to be able to work at higher temperature than silicon (Si) components. The junction temperature (Tj) of SiC components can be higher than 200°C in comparison of Si switches around 125°C. The package must endure high temperature and resist the ensuing large temperature transitions as well. The PCB technology has the advantage of being a cost efficient and well-established process. There is a possibility of massive parallel manufacturing, fine pitch, thick copper for heat and current transport, repeatable multilayer structures, etc. The embedding of power dies in PCB recently has solicited great interest. There are several kinds of proposed interconnections. The greatest advantage of the technology for power device packaging is the strip-line approach of distributing current, bringing down the stray inductance close to the theoretical minimum. The trend in PCB-embedding technology is to interconnect the components by using laser micro-vias. The thermal conductivity of the PCB core is less than 1 W.m-1.K-1 for the polyimide material such a kapton against 170 W.m-1.K-1 for aluminum nitride (AlN) for direct bonded copper (DBC) substrate. The micro-via approach suffers from the manufacturing limits imposed on their density, resulting in current and heat flux limitations. This variation of the conveyed power through the converter is a source of temperature variations in the power assembly. Temperature gradient is present along the interconnections which, combined with different thermal expansion coefficient of each material, leads to crack at micro-via/die interface and delaminates over time. These interconnection defects are affecting strongly the reliability of the converter, attributed to the applied cyclical stresses. The proposed solution combines advanced PCB technologies and " not rigid " innovative interconnection, based on electrolytic deposition of macro and nano structured interfaces, followed by thermo-compression. The assembly may thus be an elementary block for the design of power converters with high level of integration and reliability by means of a full copper and flexible interconnection allowing double-sided cooling. It is expected that the nano wires used as thermal and electrical die interface will be also more resistant to cyclical stresses. Les convertisseurs de puissance occupent une place importante dans l'ingénierie des systèmes électriques. Les puissances nominales augmentent et les convertisseurs statiques doivent répondre à ces besoins notamment en termes de compacité. Cette amélioration s'explique notamment par l'utilisation de dispositifs semi-conducteurs à large bande interdite (WBG) à base de carbure de silicium (SiC) et de nitrure de gallium (GaN) qui autorisent des fréquences de découpage et une température de fonctionnement nettement plus élevées. Cependant, les temps de commutation plus courts qui en découlent ne sont exploitables que si les éléments parasites du boîtier sont réduits au minimum afin de profiter pleinement de ces nouveaux composants.Les éléments parasites, inductances en particulier, sont source de pertes qui réduisent l'efficacité et la fiabilité du convertisseur, et ce en générant du bruit par IEM (Interférences électromagnétiques). Les améliorations à apporter sont fondamentalement difficiles à obtenir avec les boîtiers d'aujourd'hui utilisant la technologie de câblage filaire comme interconnexion des composants actifs. Dans certaines applications, les dispositifs WBG peuvent fonctionner à des températures plus élevées que les composants en silicium (Si). La température maximale de jonction (Tj) des composants en SiC peut être supérieure à 200°C, alors que celle des interrupteurs en Si est d'environ 125°C. Les assemblages doivent pouvoir supporter des températures plus élevées et résister aux régimes transitoires de température qui en découlent. La technologie des PCB a l'avantage d'être un processus peu coûteux et bien maitrisé offrant la possibilité de produire des dispositifs à grande échelle, d'utiliser un pas fin, du cuivre épais pour le transport de la chaleur et du courant, des structures multicouches répétables, etc. L'intégration de puces de puissance dans les PCB a récemment suscité un grand intérêt. Plusieurs types d'interconnexion ont été proposés, sachant que l'un des plus grands avantages de la technologie d'enfouissement PCB des interrupteurs de puissance est la réduction des inductances parasites à un niveau proche du minimum théorique. La tendance est d'interconnecter les composants par micro-vias laser. Cependant, la conductivité thermique du diélectrique utilisé est inférieure à 1 W.m-1.K-1 pour le matériau polyimide, tel que le kapton, contre 170 W.m-1.K-1 pour le nitrure d'aluminium (AlN) des substrats céramique (DBC). À cela s'ajoutent des limites en termes de densité imposée par le procédé de fabrication, ce qui entraîne des limitations de courant et de flux thermique. Les commutations des composants actifs du convertisseur sont une source de variations de température du système. Un gradient de température est présent le long des interconnexions qui, combiné aux différents coefficients de dilatation thermique de chaque matériau, peut conduire à la fissure de l'interface micro- vias/puce et donc à la défaillance dans le temps. Ces mises en défaut des interconnexions attribuées aux contraintes cycliques appliquées affectent fortement la fiabilité du convertisseur. La solution proposée et développée au cours de ces travaux combine des technologies avancées des circuits imprimés et une solution d'interconnexion innovante " non rigide ", basée sur le dépôt électrolytique d'interfaces macro et nano structurées, suivi d'une thermocompression. L'ensemble peut ainsi constituer un bloc élémentaire pour la conception de convertisseurs de puissance avec un haut niveau d'intégration et de fiabilité grâce à une interconnexion entièrement en cuivre, espérée flexible, permettant un refroidissement double face. Les nano-fils utilisés comme interface thermique et électrique de la puce sont également espérés résistants aux contraintes cycliques. |
Databáze: | OpenAIRE |
Externí odkaz: |