Up-scaling methodology for lithium-ion battery modelling

Autor: Chaouachi, Oumaima
Přispěvatelé: STAR, ABES, Laboratoire d'Innovation pour les Technologies des Energies Nouvelles et les nanomatériaux (LITEN), Institut National de L'Energie Solaire (INES), Centre National de la Recherche Scientifique (CNRS)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Centre National de la Recherche Scientifique (CNRS)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Commissariat à l'énergie atomique et aux énergies alternatives (CEA), Université Grenoble Alpes [2020-....], Yann Bultel, Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)
Jazyk: angličtina
Rok vydání: 2021
Předmět:
Zdroj: Chemical and Process Engineering. Université Grenoble Alpes [2020-..], 2021. English. ⟨NNT : 2021GRALI011⟩
Popis: Li-ion battery technology has a great success and is widely used in various portable technologies and for transport. However, giving the diversity of battery chemistry and the numerous aging phenomena, it remains critical for battery pack designers to resort to simulation of battery performance and aging in order to optimize the module design. Li-ion batteries are multiscale systems where modifications at microscopic length scales have a large impact on global cell characteristics. Mathematical models of these systems must therefore be able to link the global cell characteristics to the description of the physical phenomena at microscopic scales. The aim of the thesis is to develop an up-scaling methodology able to connect the microscopic multi-physic models to the simplified equivalent electrical circuit models used by battery module's designers. This up-scaling methodology will be implemented based on physical model at the electrode scale and validated with experimental measurements in the beginning of life of the battery and during its lifetime.
La technologie des batteries Lithium-ion bénéficie aujourd'hui d'un grand succès et est largement utilisée dans diverses technologies portatives, pour le transport et les réseaux. Néanmoins, au vue de la diversité des chimies des batteries Li-ion et des nombreux mécanismes de vieillissement, il est primordial pour les concepteursde modules de batterie d'avoir recours à la simulation des performances et du vieillissement afin de satisfaire le cahier des charges desmodules développés. Les cellules Li-ions sont des systèmes multi-physiques par essence, où des modifications aux échelles microscopiques impactent fortement les caractéristiques globales de la cellule. Les modèles mathématiques de ces systèmes doivent donc être capables de lier ces caractéristiques globales à la description des phénomènes physiques aux échelles microscopiques. L'objectif principal de cette thèse est de mettre au point une méthodologie de remontée d'échelle mathématique permettant de faire le lien entre des modèles physiques aux échelles microscopiques et des modèles simplifiés de type circuit électrique équivalent, utilisés lors de la conception de modules. Cette méthodologie sera mise en œuvre à partir des modèles physiques aux échelles fines et validée en s'appuyant sur des données expérimentales obtenues sur des cellules en début de vie et vieillies sous différentes conditions.
Databáze: OpenAIRE