In-situ HRTEM Synthesis Observation of Nanostructured LiFePO4

Autor: L. Trudeau, M., Laul, D., Veillette, R., M. Serventi, A., Zaghib, K., Mauger, A., Julien, C.M.
Přispěvatelé: Institut de Recherche d'Hydro-Québec [Varennes] (IREQ), Hitachi High-Technologies Canada, Rexdale, Hitachi High-Technologies Canada, Institut de minéralogie et de physique des milieux condensés (IMPMC), Université Pierre et Marie Curie - Paris 6 (UPMC)-IPG PARIS-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS), Physicochimie des Electrolytes, Colloïdes et Sciences Analytiques (PECSA), Université Pierre et Marie Curie - Paris 6 (UPMC)-Ecole Superieure de Physique et de Chimie Industrielles de la Ville de Paris (ESPCI Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), Université Pierre et Marie Curie - Paris 6 (UPMC)-Université Paris Diderot - Paris 7 (UPD7)-Institut de Physique du Globe de Paris (IPG Paris)-Centre National de la Recherche Scientifique (CNRS), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS), Thomas, Danielle
Jazyk: angličtina
Rok vydání: 2011
Předmět:
Zdroj: Journal of Power Sources
Journal of Power Sources, Elsevier, 2011, 196, pp.7383
Journal of Power Sources, 2011, 196, pp.7383
JPWS
JPWS, 2011, pp.1
ISSN: 0378-7753
1873-2755
Popis: International audience; In-situ high-resolution transmission electron microscopy (HRTEM) studies of the structural transformations that occur during the synthesis of carbon-coated LiFePO4 (CLiFePO4) and heat treatment to elevated temperatures were conducted in two different electron microscopes. Both microscopes have sample holders that are capable of heating up to 1500 °C, with one working under high vacuum and the other capable of operating with the sample surrounded by a low gaseous environment. The C-LiFePO4 samples were prepared using three different compositions of precursor materials with Fe(0), Fe(II) or Fe(III), a Li-containing salt and a polyethylene-block-poly(ethylene glycol)-50% ethylene oxide or lactose. The in-situ TEM studies suggest that low-cost Fe(0) and a low-cost carbon-containing compound such as lactose are very attractive precursors for mass production of C-LiFePO4, and that 700 °C is the optimum synthesis temperature. At temperatures higher than 800 °C, LiFePO4 has a tendency to decompose. The same insitu measurements have been made on particles without carbon coat. The results show that the homogeneous deposit of the carbon deposit at 700 °C is the result of the annealing that cures the disorder of the surface layer of bare LiFePO4. Electrochemical tests supported the conclusion that the C-LiFePO4 derived from Fe(0) is the most attractive for mass production.
Databáze: OpenAIRE