Analyse modale des structures dans des états elastiques périodiques
Autor: | Bentvelsen, Barend Julius |
---|---|
Přispěvatelé: | Institut Jean Le Rond d'Alembert (DALEMBERT), Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Sorbonne Université, Corrado Maurini, Arnaud Lazarus, Sorbonne Universites, UPMC University of Paris 6, Corrado MAURINI, Arnaud LAZARUS |
Jazyk: | angličtina |
Rok vydání: | 2018 |
Předmět: |
[PHYS.MECA.VIBR]Physics [physics]/Mechanics [physics]/Vibrations [physics.class-ph]
FEM Floquet theory Dynamics of Structures systèmes periodiques Modal analysis Systèmes périodiques Vibrations Théorie de Floquet [SPI.MECA.VIBR]Engineering Sciences [physics]/Mechanics [physics.med-ph]/Vibrations [physics.class-ph] Dynamique des structures Time-periodic systems Stabilité time periodic systems linear time periodic [SPI]Engineering Sciences [physics] [PHYS.MECA.STRU]Physics [physics]/Mechanics [physics]/Structural mechanics [physics.class-ph] [SPI.MECA.STRU]Engineering Sciences [physics]/Mechanics [physics.med-ph]/Structural mechanics [physics.class-ph] Floquet théorie Ingénierie des structures Méthode éléments finis Structural dynamics Analyse modale Ziegler column Stability |
Zdroj: | Structural mechanics [physics.class-ph]. Sorbonne Université, 2018. English. ⟨NNT : 2018SORUS619⟩ Engineering Sciences [physics]. Sorbonne Universites, UPMC University of Paris 6, 2019. English |
Popis: | Time-periodic systems are an important niche in dynamical systems, analysing these systems profoundly opens up new possibilities for engineering. The goal of this thesis is to provide a comprehensive guide on computing Floquet forms and application of modal analysis of structures in time-periodic elastic state. The method is illustrated by fundamental examples. Modal analysis consists of computing the mode shape and the natural frequency of the equations of motion, this method is limited to linear time-invariant structures. Linear time-periodic systems have attracted attention over the past decades. Floquet theory has been applied to analyse stability. Using the same theory it is possible to compute periodic eigenvectors, known as Floquet forms, which are time-periodically equivalent to modes. Thus allowing the generalisation of modal analysis to linear time-periodic structures. Floquet forms are computed as eigensolutions of Hill’s matrix. The eigenspectrum requires treatment to find linearly independent Floquet forms. By using the archetypical case of a Ziegler column eigenvector sorting is shown to be the most efficient method to sort out Floquet forms. Projecting the physical equations of motion on Floquet forms results in a system of uncoupled equations with time independent coefficients. Truncating the number of Floquet forms results in a reduced order model. Computing Floquet forms is simplified by first projecting the equations of motion on classic modes. A finite element model of a periodically prestressed beam shows convergence of the solution with increasing number of Floquet forms. Thus proving the concept of time-periodic modal analysis.; Les systèmes périodiques sont une niche importante dans l’analyse des systèmes dynamiques. L'analyse modale ouvre de nouvelles opportunités pour l’ingénierie et la recherche. Le but de cette thèse est de montrer de manière exhaustive comment calculer une base modale pour des systèmes périodiques et comment appliquer ça pour réduire les équations de mouvement. Pour montrer la méthode marche des cas fondamentaux sont analysés. |
Databáze: | OpenAIRE |
Externí odkaz: |