Classifying Microcalcifications in Digital Mammograms using Machine Learning techniques
Autor: | Golobardes, Elisabet, Martí, Joan, Español, Josep, Salamó Llorente, Maria, Freixenet, Jordi, Llorà Fàbrega, Xavier, Maroto, Albert, Bernadó Mansilla, Ester |
---|---|
Přispěvatelé: | Universitat Ramon Llull. La Salle, Universitat de Girona, Hospital Universitari Doctor Josep Trueta |
Jazyk: | angličtina |
Rok vydání: | 2001 |
Předmět: | |
Zdroj: | RECERCAT (Dipòsit de la Recerca de Catalunya) Recercat: Dipósit de la Recerca de Catalunya Varias* (Consorci de Biblioteques Universitáries de Catalunya, Centre de Serveis Científics i Acadèmics de Catalunya) Recercat. Dipósit de la Recerca de Catalunya instname |
Popis: | This paper presents a Computer Aided Diagnosis (CAD) of breast cancer from mammograms. The first part involves severa! image processing techniques, which extract a set of features from the microcalcifications (µCa) present in a mammogram. The second part applies different machine learning techniques to obtain an automatic diagnosis. The Machine Learning (ML) approaches are: Case-Based Reasoning (CBR) and Genetic Algorithms (GA). We study the application of these algorithms as classification systems in order to differentiate benign from malignant µCa in mammograms, obtained from the mammography database of the Girona Health Area, and we compare the classification results to other classification techniques. |
Databáze: | OpenAIRE |
Externí odkaz: |