Personalized Parsimonious Language Models for User Modeling in Social Bookmaking Systems
Autor: | Ould Amer, Nawal, Mulhem, Philippe, Géry, Mathias |
---|---|
Přispěvatelé: | Laboratoire d'Informatique de Grenoble (LIG ), Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019]), Modélisation et Recherche d’Information Multimédia [Grenoble] (MRIM ), Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019]), Laboratoire Hubert Curien [Saint Etienne] (LHC), Institut d'Optique Graduate School (IOGS)-Université Jean Monnet [Saint-Étienne] (UJM)-Centre National de la Recherche Scientifique (CNRS) |
Jazyk: | angličtina |
Rok vydání: | 2017 |
Předmět: | |
Zdroj: | European Conference on Information Retrieval European Conference on Information Retrieval, Apr 2017, Aberdeen, United Kingdom |
Popis: | International audience; This paper focuses on building accurate profiles of users, based on bookmarking systems. To achieve this goal, we define personalized parsimonious language models that employ three main resources: the tags, the documents tagged by the user and word embeddings that handle general knowledge. Experiments completed on Delicious data show that our proposal outperforms state-of-the-art approaches and non-personalized parsimonious models. |
Databáze: | OpenAIRE |
Externí odkaz: |