From non parametric statistics to speech denoising
Autor: | Pastor, Dominique, Amehraye, Asmaa |
---|---|
Přispěvatelé: | Télécom Bretagne, Bibliothèque, Département Signal et Communications (SC), Institut Mines-Télécom [Paris] (IMT)-Télécom Bretagne-Université européenne de Bretagne - European University of Brittany (UEB), Université européenne de Bretagne - European University of Brittany (UEB)-Télécom Bretagne-Institut Mines-Télécom [Paris] (IMT) |
Jazyk: | angličtina |
Rok vydání: | 2006 |
Předmět: | |
Zdroj: | Proceedings ISIVC 2006 : 3d international symposium on image/video communications over fixed and mobile networks ISIVC 2006 : 3d international symposium on image/video communications over fixed and mobile networks ISIVC 2006 : 3d international symposium on image/video communications over fixed and mobile networks, Sep 2006, Hammamet, Tunisia |
Popis: | International audience; Given some signal additively corrupted by independent white Gaussian noise with unknown standard deviation σ,we present a new estimator ofσ. This estimator derives from a theoretical result presented and commented in the paper. Without any preliminary signal detection, the esti-mate is performed on the basis of the time-frequency components returned by a standard spectrogram where the Discrete Fourier Transform is simply weighted by the square window. No assumption about the signal statistics is made.The signal time-frequency components are assumed to have probabilities of presence less than or equal to one half.This estimator is suited to speech denoising. It avoids the use of any Voice Activity Detector and is an alternative solution to subspace approaches. Objective performance measurements show that the standard Wiener filtering of speech signals can be tuned with the outcome of this es-timator without a significant loss in comparison with the measurements obtained when the noise standard deviation is known |
Databáze: | OpenAIRE |
Externí odkaz: |