Přispěvatelé: |
Département d'informatique - ENS Paris (DI-ENS), École normale supérieure - Paris (ENS-PSL), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Institut National de Recherche en Informatique et en Automatique (Inria)-Centre National de la Recherche Scientifique (CNRS), Parallélisme de Kahn Synchrone ( Parkas), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Institut National de Recherche en Informatique et en Automatique (Inria)-Centre National de la Recherche Scientifique (CNRS)-École normale supérieure - Paris (ENS-PSL), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Institut National de Recherche en Informatique et en Automatique (Inria)-Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS)-Inria de Paris, Institut National de Recherche en Informatique et en Automatique (Inria), Google Brain, Paris, Logical Time for Formal Embedded System Design (KAIROS), Inria Sophia Antipolis - Méditerranée (CRISAM), Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-COMmunications, Réseaux, systèmes Embarqués et Distribués (Laboratoire I3S - COMRED), Laboratoire d'Informatique, Signaux, et Systèmes de Sophia Antipolis (I3S), Université Nice Sophia Antipolis (1965 - 2019) (UNS), COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)-Université Nice Sophia Antipolis (1965 - 2019) (UNS), COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)-Laboratoire d'Informatique, Signaux, et Systèmes de Sophia Antipolis (I3S), COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA), Airbus [France], SAFRAN Group, Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche en Informatique et en Automatique (Inria)-École normale supérieure - Paris (ENS Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL), Inria de Paris, Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Département d'informatique - ENS Paris (DI-ENS), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-École normale supérieure - Paris (ENS Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS), Université Nice Sophia Antipolis (... - 2019) (UNS), COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)-Université Nice Sophia Antipolis (... - 2019) (UNS), Département d'informatique de l'École normale supérieure (DI-ENS), École normale supérieure - Paris (ENS Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Institut National de Recherche en Informatique et en Automatique (Inria)-Centre National de la Recherche Scientifique (CNRS)-École normale supérieure - Paris (ENS Paris) |
Popis: |
The design and implementation of reactive, hard real-time systems involves modeling and generating efficient code for the integration of harmonic multi-periodic tasks. Such a reactive system can be modeled as a synchronous program orchestrating computations, state machine transitions and communications. In a harmonic multi-periodic integration program, task execution rates are related through integral ratios. This paper aims at providing a scalable way to implement large systems composed of modular, synchronous reactive tasks, and to generate efficient code satisfying real-time constraints.The paper describes three incremental extensions to the Lustre language and evaluates them on production applications. First, we propose a clock calculus for 1-synchronous clocks, i.e. strictly periodic clocks with a single activation on their period; we show how the compiler can exploit this information to raise the level of abstraction when integrating tasks at the system level. Second, we allow some variables to have unknown phases, extending the clock inference to gather constraints on unknown phases, using a solver for load balancing over multi-periodic real-time schedules, before instantiating this solution to assign clocks to all reactions of the system. Third, we propose temporally underspecified operations, relevant to many discrete control scenarii, for example on variables with low temporal variability; we show how to express this in a composable way, retaining the Kahn semantics of the synchronous program outside these controlled relaxations, and exploiting slack in the computation to relax the constraints of the real-time load-balancing problem. |