Photosystem II electron transfer cycle and chlororespiration in planktonic diatoms

Autor: Lavaud, Johann, Van Gorkom, Hans J., Etienne, Anne-Lise
Přispěvatelé: LIttoral ENvironnement et Sociétés - UMRi 7266 (LIENSs), Université de La Rochelle (ULR)-Centre National de la Recherche Scientifique (CNRS), Centre National de la Recherche Scientifique (CNRS)
Jazyk: angličtina
Rok vydání: 2002
Předmět:
Zdroj: Photosynthesis Research
Photosynthesis Research, Springer Verlag, 2002, 74, pp.51-59. ⟨10.1023/A:1020890625141⟩
ISSN: 0166-8595
1573-5079
DOI: 10.1023/A:1020890625141⟩
Popis: International audience; The dominance of diatoms in turbulent waters suggests special adaptations to the wide fluctuations in light intensity that phytoplankton must cope with in such an environment. Our recent demonstration of the unusually effective photoprotection by the xanthophyll cycle in diatoms (Lavaud et al. 2002) also revealed that failure of this protection led to inactivation of oxygen evolution, but not to the expected photoinhibition. Photo-oxidative damage might be prevented by an electron transfer cycle around Photosystem II (PS II). The induction of such a cycle at high light intensity was verified by measurements of the flash number dependence of oxygen production in a series of single-turnover flashes. After a few minutes of saturating illumination the oxygen flash yields are temporarily decreased. The deficit in oxygen production amounts to at most 3 electrons per PS II, but continues to reappear with a half time of 2 min in the dark until the total pool of reducing equivalents accumulated during the illumination has been consumed by (chloro)respiration. This is attributed to an electron transfer pathway from the plastoquinone pool or the acceptor side of PS II to the donor side of PS II that is insignificant at limiting light intensity but is accelerated to milliseconds at excess light intensity. Partial filling of the 3-equivalents capacity of the cyclic electron transfer path in PS II may prevent both acceptor-side photoinhibition in oxygen-evolving PS II and donor-side photoinhibition when the oxygen-evolving complex is temporarily inactivated.
Databáze: OpenAIRE