R-MDP: A Game Theory Approach for Fault-Tolerant Data and Service Management in Crude Oil Pipelines Monitoring Systems

Autor: Ahmed, Safuriyawu, Le Mouël, Frédéric, Stouls, Nicolas, Dibangoye, Jilles
Přispěvatelé: Dynamic Software and Distributed Systems (DYNAMID), CITI Centre of Innovation in Telecommunications and Integration of services (CITI), Institut National des Sciences Appliquées de Lyon (INSA Lyon), Université de Lyon-Institut National des Sciences Appliquées (INSA)-Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National des Sciences Appliquées de Lyon (INSA Lyon), Université de Lyon-Institut National des Sciences Appliquées (INSA)-Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National de Recherche en Informatique et en Automatique (Inria), Robots coopératifs et adaptés à la présence humaine en environnements (CHROMA), Inria Grenoble - Rhône-Alpes, Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-CITI Centre of Innovation in Telecommunications and Integration of services (CITI), Université de Lyon-Institut National des Sciences Appliquées (INSA)-Université de Lyon-Institut National des Sciences Appliquées (INSA)-Inria Lyon, Institut National de Recherche en Informatique et en Automatique (Inria), Stouls, Nicolas
Jazyk: angličtina
Rok vydání: 2022
Předmět:
Zdroj: MobiQuitous 2022-19th EAI International Conference on Mobile and Ubiquitous Systems: Computing, Networking and Services
MobiQuitous 2022-19th EAI International Conference on Mobile and Ubiquitous Systems: Computing, Networking and Services, Nov 2022, Pittsburgh, United States
Popis: International audience; Failures in pipeline transportation of crude oil have numerous adverse effects, such as ecological degradation, environmental pollution and a decrease in revenue for the operators, to mention a few. Efficient data and service management can predict and prevent these failures, reducing the downtime of the pipeline infrastructure, among other benefits. Thus, we propose a two-stage approach to data and service management in Leakage Detection and Monitoring Systems (LDMS) for crude oil pipelines. It aims to maximise the accuracy of leakage detec- tion and localisation in a fault-tolerant and energy-efficient manner. The problem is modelled as a Markov Decision Process (MDP) based on the historical incident data from the Nigerian National Petroleum Corporation (NNPC) pipeline networks. Results obtained guarantee detection in at least two deployed nodes with a minimum localisation accuracy of 90%. Additionally, we achieved approximately 77% and 26% reduction in energy consumption compared to a pessimistic strategy and a globalised heuristic approach, respectively.
Databáze: OpenAIRE