Turning Escherichia coli into a Frataxin-Dependent Organism

Autor: Roche, Béatrice, Agrebi, Rym, Huguenot, Allison, Ollagnier De Choudens, Sandrine, Barras, Frédéric, Py, Béatrice
Přispěvatelé: Laboratoire de chimie bactérienne (LCB), Aix Marseille Université (AMU)-Centre National de la Recherche Scientifique (CNRS), De Duve Institute, Université Catholique de Louvain = Catholic University of Louvain (UCL), Laboratoire de Chimie et Biologie des Métaux (LCBM - UMR 5249), Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Institut de Recherche Interdisciplinaire de Grenoble (IRIG), Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)
Jazyk: angličtina
Rok vydání: 2015
Předmět:
Zdroj: PLoS Genetics
PLoS Genetics, 2015, 11 (5), pp.UNSP e1005134. ⟨10.1371/journal.pgen.1005134⟩
PLoS Genetics, Public Library of Science, 2015, 11 (5), pp.UNSP e1005134. ⟨10.1371/journal.pgen.1005134⟩
PLoS Genetics, Vol 11, Iss 5, p e1005134 (2015)
ISSN: 1553-7390
1553-7404
DOI: 10.1371/journal.pgen.1005134⟩
Popis: International audience; Fe-S bound proteins are ubiquitous and contribute to most basic cellular processes. A defect in the ISC components catalyzing Fe-S cluster biogenesis leads to drastic phenotypes in both eukaryotes and prokaryotes. In this context, the Frataxin protein (FXN) stands out as an exception. In eukaryotes, a defect in FXN results in severe defects in Fe-S cluster biogenesis, and in humans, this is associated with Friedreich's ataxia, a neurodegenerative disease. In contrast, prokaryotes deficient in the FXN homolog CyaY are fully viable, despite the clear involvement of CyaY in ISC-catalyzed Fe-S cluster formation. The molecular basis of the differing importance in the contribution of FXN remains enigmatic. Here, we have demonstrated that a single mutation in the scaffold protein IscU rendered E. coli viability strictly dependent upon a functional CyaY. Remarkably, this mutation changed an Ile residue, conserved in prokaryotes at position 108, into a Met residue, conserved in eukaryotes. We found that in the double mutant IscU(IM)Delta cyaY, the ISC pathway was completely abolished, becoming equivalent to the Delta iscU deletion strain and recapitulating the drastic phenotype caused by FXN deletion in eukaryotes. Biochemical analyses of the "eukaryotic-like" IscU(IM) scaffold revealed that it exhibited a reduced capacity to form Fe-S clusters. Finally, bioinformatic studies of prokaryotic IscU proteins allowed us to trace back the source of FXN-dependency as it occurs in present-day eukaryotes. We propose an evolutionary scenario in which the current mitochondrial Isu proteins originated from the IscU(IM) version present in the ancestor of the Rickettsiae. Subsequent acquisition of SUF, the second Fe-S cluster biogenesis system, in bacteria, was accompanied by diminished contribution of CyaY in prokaryotic Fe-S cluster biogenesis, and increased tolerance to change in the amino acid present at the 108th position of the scaffold.
Databáze: OpenAIRE