Deep learning for weed mapping using multispectral drone Acquired imagery
Autor: | Arias VAnegas, Victor Alfonso |
---|---|
Přispěvatelé: | Gonzalez Osorio, Fabio Augusto, Machine Learning Perception and Discovery Lab (MindLab) |
Jazyk: | Spanish; Castilian |
Rok vydání: | 2022 |
Předmět: |
631 - Técnicas específicas
aparatos equipos materiales [630 - Agricultura y tecnologías relacionadas] Aprendizaje Profundo Vehículo Aéreo No Tripulado 004 - Procesamiento de datos Ciencia de los computadores [000 - Ciencias de la computación información y obras generales] Segmentación Semántica Weed control - research Aprendizaje Automático En Producción Weed control Redes Neuronales Convolucionales Control de maleza imágenes Multiespectrales Mapeo de Maleza Control de maleza - investigaciones 632 - Lesiones enfermedades plagas vegetales Clasificación Por Píxeles |
Zdroj: | Repositorio UN Universidad Nacional de Colombia instacron:Universidad Nacional de Colombia |
Popis: | ilustraciones, fotografías a color, gráficas La maleza o malas hierbas se define como una planta que crece de forma silvestre en un lugar indeseable para la actividad agrícola. Esto es debido a que compite por los recursos limitados disponibles en un sector previamente destinado y acondicionado a la producción de alimentos u otras actividades específicas, disminuyendo su rendimiento. Tradicionalmente los granjeros aplican la escarda o eliminación de malas hierbas con herramientas manuales, haciendo de este un proceso lento y costoso debido a la gran cantidad de mano de obra necesaria. Con el fin de reducir el número de trabajadores en la labor, agentes químicos de acción selectiva son usados directamente sobre el cultivo para matar la planta invasora, sin embargo, en grandes extensiones de terreno es difícil conocer previamente la distribución espacial de la maleza, por lo que la aplicación del agente se hace de manera uniforme en toda la plantación, llevando a un mayor desperdicio del producto y por ende un incremento en los costos. En este documento se propone una estrategia para la detección automática de la distribución espacial de la maleza en un terreno cultivado usando algoritmos de aprendizaje profundo (DL) en imágenes multiespectrales. Para probar el desempeño de la estrategia se utilizó una base de datos de imágenes recolectada por un vehículo aéreo no tripulado (VANT). Las bases de datos empleadas proporcionan las imágenes multiespectrales y su respectiva máscara, esta última representa la información semántica de cada uno de los pixeles de la imagen, la información semántica se constituye a partir de tres colores cada uno de ellos pertenecientes a una clase de interés: el rojo representa la maleza, el verde representa el cultivo y el negro representa el fondo o todo aquello que no es vegetal en el mapa. Adicionalmente, el problema se abordó como un problema de segmentación semántica y la estrategia de solución fue un algoritmo de DL. Al aplicar la solución a las imágenes se evidencia una mejora en las diferentes métricas usadas en la literatura para estas bases de datos tales como el AUC y el F1-score, además se evidencia excelentes resultados en las máscaras predichas para los datos de prueba. Por último, se analiza el aporte de los diferentes canales multiespectrales y de técnicas clásicas de preprocesamiento de imágenes a las métricas del modelo, además de la capacidad de este por generar buenas representaciones semánticas del terreno captado por el sensor.(Texto tomado de la fuente) A weed is defined as a plant that grows wild in a place undesirable for agricultural crops. This is because it competes for the limited resources available in a sector previously destined and conditioned for food production or other specific activities, decreasing its yield. Traditionally farmers apply weeding or weed removal with hand tools, making this a slow and costly process due to the large amount of labor required. In order to reduce the number of workers involved, selective action chemical agents are used directly on the crop to kill the invasive plant, however, in large extensions of land it is difficult to know the spatial distribution of the weeds beforehand, so the application of the agent is done uniformly throughout the plantation, leading to a greater waste of the product and therefore an increase in costs. This thesis presents a strategy for automatic detection of the spatial distribution of weeds in a cultivated field using deep learning (DL) algorithms on multispectral images is proposed. An image database collected by an unmanned aerial vehicle (UAV) was used to test the performance of the strategy. The databases used provide the multispectral images and their respective mask, the latter represents the semantic information of each of the pixels of the image, the semantic information is represented using three colors, each one belonging to a class of interest: red represents the weeds, green represents the crop and black represents the background or everything that is not vegetation on the map. Additionally, the problem was approached as a semantic segmentation problem and the solution strategy was a DL algorithm. By applying the solution to the images, an improvement in the different metrics used in the literature for these databases such as AUC and F1-score is evidenced, in addition to excellent results in the predicted masks for the test data. Finally, the contribution of the different multispectral channels and classical image preprocessing techniques to the model metrics is analyzed, as well as the model’s ability to generate good semantic representations of the terrain captured by the sensor. Colciencias Maestría Magíster en Ingeniería - Ingeniería de Sistemas y Computación Procesamiento digital de imágenes. |
Databáze: | OpenAIRE |
Externí odkaz: |