Autor: |
Chaumont-Frelet, Théophile, Vohralík, Martin |
Přispěvatelé: |
Modélisation et méthodes numériques pour le calcul d'interactions onde-matière nanostructurée (ATLANTIS), Inria Sophia Antipolis - Méditerranée (CRISAM), Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Laboratoire Jean Alexandre Dieudonné (LJAD), Université Nice Sophia Antipolis (1965 - 2019) (UNS), COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)-Université Nice Sophia Antipolis (1965 - 2019) (UNS), COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA), Laboratoire Jean Alexandre Dieudonné (LJAD), Simulation for the Environment: Reliable and Efficient Numerical Algorithms (SERENA), Inria de Paris, Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria), Centre d'Enseignement et de Recherche en Mathématiques et Calcul Scientifique (CERMICS), École des Ponts ParisTech (ENPC), European Project: 647134,H2020 ERC,ERC-2014-CoG,GATIPOR(2015) |
Jazyk: |
angličtina |
Rok vydání: |
2022 |
Předmět: |
|
Popis: |
We design an operator from the infinite-dimensional Sobolev space H(curl) to its finite-dimensional subspace formed by the Nédélec piecewise polynomials on a tetrahedral mesh that has the following properties: 1) it is defined over the entire H(curl), including boundary conditions imposed on a part of the boundary; 2) it is defined locally in a neighborhood of each mesh element; 3) it is based on simple piecewise polynomial projections; 4) it is stable in the L2-norm, up to data oscillation; 5) it has optimal (local-best) approximation properties; 6) it satisfies the commuting property with its sibling operator on H(div); 7) it is a projector, i.e., it leaves intact objects that are already in the Nédélec piecewise polynomial space. This operator can be used in various parts of numerical analysis related to the H(curl) space. We in particular employ it here to establish the two following results: i) equivalence of global-best, tangential-trace-and curl-constrained, and local-best, unconstrained approximations in H(curl) including data oscillation terms; and ii) fully h- and p- (mesh-size- and polynomial-degree-) optimal approximation bounds valid under the minimal Sobolev regularity only requested elementwise. As a result of independent interest, we also prove a p-robust equivalence of curl-constrained and unconstrained best-approximations on a single tetrahedron in the H(curl)setting, including hp data oscillation terms. |
Databáze: |
OpenAIRE |
Externí odkaz: |
|