Finite-Sample Simulation-Based Inference in VAR Models with Applications to Order Selection and Causality Testing

Autor: Dufour, Jean Marie, Jouini, Tarek
Přispěvatelé: Université de Montréal. Faculté des arts et des sciences. Département de sciences économiques
Rok vydání: 2005
Předmět:
[JEL:C12] Mathématiques et méthodes quantitatives - Économétrie et méthodes statistiques
généralités - Tests d'hypothèses
order selection
[JEL:C15] Mathematical and Quantitative Methods - Econometric and Statistical Methods: General - Statistical Simulation Methods
Monte Carlo Methods
Bootstrap Methods
[JEL:C15] Mathématiques et méthodes quantitatives - Économétrie et méthodes statistiques
généralités - Méthodes de simulation statistique: la méthode Monte Carlo
[JEL:E4] Macroeconomics and Monetary Economics - Money and Interest Rates
Vector autoregression
exact test
Vector autoregression
VAR
exact test
Monte Carlo test
maximized Monte Carlo test
bootstrap
Granger causality
order selection
nonstationary model
macroeconomics
money and income
interest rate
inflation

VAR
Monte Carlo test
maximized Monte Carlo test
bootstra
Granger causality
nonstationary model
macroeconomics
money and income
interest rate
inflation
jel:E4
jel:E5
bootstrap
[JEL:E4] Macroéconomie et économie monétaire - Monnaie et taux d'intérêt
[JEL:C32] Mathématiques et méthodes quantitatives - Méthodes en économétrie
modèles à équations multiples et simultanées - Modèles de séries chronologiques
[JEL:C32] Mathematical and Quantitative Methods - Econometric Methods: Multiple
Simultaneous Equation Models
Multiple Variables
Endogenous Regressors - Time-Series Models
jel:C12
jel:C32
[JEL:C12] Mathematical and Quantitative Methods - Econometric and Statistical Methods: General - Hypothesis Testing
jel:C15
[JEL:E5] Macroéconomie et économie monétaire - Politique monétaire
banque centrale
masse monétaire et crédit

[JEL:E5] Macroeconomics and Monetary Economics - Monetary Policy
Central Banking
and the Supply of Money and Credit
ISSN: 1965-1996
Popis: Statistical tests in vector autoregressive (VAR) models are typically based on large-sample approximations, involving the use of asymptotic distributions or bootstrap techniques. After documenting that such methods can be very misleading even with fairly large samples, especially when the number of lags or the number of equations is not small, we propose a general simulation-based technique that allows one to control completely the level of tests in parametric VAR models. In particular, we show that maximized Monte Carlo tests [Dufour (2002)] can provide provably exact tests for such models, whether they are stationary or integrated. Applications to order selection and causality testing are considered as special cases. The technique developed is applied to quarterly and monthly VAR models of the U.S. economy, comprising income, money, interest rates and prices, over the period 1965-1996.
Databáze: OpenAIRE