Popis: |
Previous studies have demonstrated that successful listening with advanced signal processing in digital hearing aids is associated with individual cognitive capacity, particularly working memory capacity (WMC). This study aimed to examine the relationship between cognitive abilities (cognitive processing speed and WMC) and individual listeners responses to digital signal processing settings in adverse listening conditions. A total of 194 native Swedish speakers (83 women and 111 men), aged 33-80 years (mean = 60.75 years, SD = 8.89), with bilateral, symmetrical mild to moderate sensorineural hearing loss who had completed a lexical decision speed test (measuring cognitive processing speed) and semantic word-pair span test (SWPST, capturing WMC) participated in this study. The Hagerman test (capturing speech recognition in noise) was conducted using an experimental hearing aid with three digital signal processing settings: (1) linear amplification without noise reduction (NoP), (2) linear amplification with noise reduction (NR), and (3) non-linear amplification without NR ("fast-acting compression"). The results showed that cognitive processing speed was a better predictor of speech intelligibility in noise, regardless of the types of signal processing algorithms used. That is, there was a stronger association between cognitive processing speed and NR outcomes and fast-acting compression outcomes (in steady state noise). We observed a weaker relationship between working memory and NR, but WMC did not relate to fast-acting compression. WMC was a relatively weaker predictor of speech intelligibility in noise. These findings might have been different if the participants had been provided with training and or allowed to acclimatize to binary masking noise reduction or fast-acting compression. Funding Agencies|Linnaeus Centre Hearing and Deafness from Swedish Research Council [349-2007-8654] |