Descriptive Set Theory and $\omega$-Powers of Finitary Languages

Autor: Finkel, Olivier, Lecomte, Dominique
Přispěvatelé: Equipe de Logique Mathématique (ELM), Institut de Mathématiques de Jussieu - Paris Rive Gauche (IMJ-PRG (UMR_7586)), Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université de Paris (UP)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université de Paris (UP), Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université de Paris (UP), Adrian Rezus
Jazyk: angličtina
Rok vydání: 2020
Předmět:
Zdroj: Contemporary Logic and Computing
Adrian Rezus. Contemporary Logic and Computing, 1, College Publications, pp.518-541, 2020, Landscapes in Logic
Popis: International audience; The ω-power of a finitary language L over a finite alphabet Σ is the language of infinite words over Σ defined by L ∞ := {w 0 w 1. .. ∈ Σ ω | ∀i ∈ ω w i ∈ L}. The ω-powers appear very naturally in Theoretical Computer Science in the characterization of several classes of languages of infinite words accepted by various kinds of automata, like Büchi automata or Büchi pushdown automata. We survey some recent results about the links relating Descriptive Set Theory and ω-powers.
Databáze: OpenAIRE