On the critical point structure of eigenfunctions belonging to the first nonzero eigenvalue of a genus two closed hyperbolic surface

Autor: Cadavid, Carlos A., Osorno, María C., Ruíz, Óscar E.
Přispěvatelé: Universidad EAFIT. Departamento de Ingeniería Mecánica, Laboratorio CAD/CAM/CAE
Jazyk: angličtina
Rok vydání: 2012
Předmět:
Zdroj: Repositorio EAFIT
Universidad EAFIT
instacron:Universidad EAFIT
Popis: We develop a method based on spectral graph theory to approximate the eigenvalues and eigenfunctions of the Laplace-Beltrami operator of a compact riemannian manifold -- The method is applied to a closed hyperbolic surface of genus two -- The results obtained agree with the ones obtained by other authors by different methods, and they serve as experimental evidence supporting the conjectured fact that the generic eigenfunctions belonging to the first nonzero eigenvalue of a closed hyperbolic surface of arbitrary genus are Morse functions having the least possible total number of critical points among all Morse functions admitted by such manifolds
Databáze: OpenAIRE