Density-driven structural transformations in B2O3 glass

Autor: Zeidler, Anita, Wezka, Kamil, Whittaker, Dean A. J., Salmon, Philip S., Baroni, Axelle, Klotz, Stefan, Fischer, Henry E., Wilding, Martin C., Bull, Craig L., Tucker, Matthew G., Salanne, Mathieu, Ferlat, Guillaume, Micoulaut, Matthieu
Přispěvatelé: Department of Physics, Okayama University, Institut de minéralogie, de physique des matériaux et de cosmochimie (IMPMC), Muséum national d'Histoire naturelle (MNHN)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut de recherche pour le développement [IRD] : UR206-Centre National de la Recherche Scientifique (CNRS), Laboratoire de Physique Théorique de la Matière Condensée (LPTMC), Université Pierre et Marie Curie - Paris 6 (UPMC)-Centre National de la Recherche Scientifique (CNRS), PHysicochimie des Electrolytes et Nanosystèmes InterfaciauX (PHENIX), Université Pierre et Marie Curie - Paris 6 (UPMC)-Ecole Superieure de Physique et de Chimie Industrielles de la Ville de Paris (ESPCI Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), Institut Laue-Langevin (ILL), Institute of Mathematical, Physics and Computer Sciences (IMAPCS), Aberystwyth University, ISIS Facility, STFC Rutherford Appleton Laboratory (RAL), Science and Technology Facilities Council (STFC)-Science and Technology Facilities Council (STFC), Labex Matisse, ANR-11-IDEX-0004,SUPER,Sorbonne Universités à Paris pour l'Enseignement et la Recherche(2011), Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut de recherche pour le développement [IRD] : UR206-Muséum national d'Histoire naturelle (MNHN)-Centre National de la Recherche Scientifique (CNRS), Centre National de la Recherche Scientifique (CNRS)-Université Pierre et Marie Curie - Paris 6 (UPMC), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie du CNRS (INC), ILL
Jazyk: angličtina
Rok vydání: 2014
Předmět:
Zdroj: Physical Review B: Condensed Matter and Materials Physics (1998-2015)
Physical Review B: Condensed Matter and Materials Physics (1998-2015), 2014, 90 (2), pp.024206. ⟨10.1103/PhysRevB.90.024206⟩
Physical Review B: Condensed Matter and Materials Physics (1998-2015), American Physical Society, 2014, 90 (2), pp.024206. ⟨10.1103/PhysRevB.90.024206⟩
ISSN: 1098-0121
1550-235X
Popis: International audience; The method of in situ high-pressure neutron diffraction is used to investigate the structure of B2O3 glasson compression in the range from ambient to 17.5(5) GPa. The experimental results are supplemented bymolecular dynamics simulations made using a newly developed aspherical ion model. The results tie togetherthose obtained from other experimental techniques to reveal three densification regimes. In the first, BO3 trianglesare the predominant structural motifs as the pressure is increased from ambient to 6.3(5) GPa, but there is analteration to the intermediate range order which is associated with the dissolution of boroxol rings. In the second,BO4 motifs replace BO3 triangles at pressures beyond 6.3 GPa and the dissolution of boroxol rings continuesuntil it is completed at 11–14 GPa. In the third, the B-O coordination number continues to increase with pressureto give a predominantly tetrahedral glass, a process that is completed at a pressure in excess of 22.5 GPa. Onrecovery of the glass to ambient from a pressure of 8.2 GPa, triangular BO3 motifs are recovered but, relative to theuncompressed material, there is a change to the intermediate range order. The comparison between experimentand simulation shows that the aspherical ion model is able to provide results of unprecedented accuracy atpressures up to at least 10 GPa.
Databáze: OpenAIRE