Towards a multi-approach system for uncertain spatio-temporal knowledge discovery in satellite imagery
Autor: | Wadii Boulila, Saheb Ettabaa, Karim, Farah, Imed Riadh, Solaiman, Basel, Ben Guezala, Henda |
---|---|
Přispěvatelé: | Département Image et Traitement Information (ITI), Université européenne de Bretagne - European University of Brittany (UEB)-Télécom Bretagne-Institut Mines-Télécom [Paris] (IMT), École Nationale des Sciences de l'Informatique [Manouba] (ENSI), Université de la Manouba [Tunisie] (UMA), Laboratoire de Traitement de l'Information Medicale (LaTIM), Université européenne de Bretagne - European University of Brittany (UEB)-Télécom Bretagne-Centre Hospitalier Régional Universitaire de Brest (CHRU Brest)-Université de Brest (UBO)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Institut Mines-Télécom [Paris] (IMT), Télécom Bretagne (devenu IMT Atlantique), Ex-Bibliothèque |
Předmět: |
[INFO.INFO-AI] Computer Science [cs]/Artificial Intelligence [cs.AI]
[INFO.INFO-TI] Computer Science [cs]/Image Processing [eess.IV] Spatiotemporal knowledge [INFO.INFO-IR]Computer Science [cs]/Information Retrieval [cs.IR] [INFO.INFO-TI]Computer Science [cs]/Image Processing [eess.IV] Satellite images processing [INFO.INFO-IR] Computer Science [cs]/Information Retrieval [cs.IR] Knowledge discovery in databases Multiapproach system Imperfection processing [INFO.INFO-AI]Computer Science [cs]/Artificial Intelligence [cs.AI] |
Zdroj: | BASE-Bielefeld Academic Search Engine International Journal on Graphics, Vision and Image Processing International Journal on Graphics, Vision and Image Processing, 2009, 09 (06), pp.19-25 |
Popis: | International audience; Exploiting images coming from different sensors is an important challenge in the remote sensing field. Integration of new knowledge is crucial to help the user interpret satellite images and track their spatio-temporal changes over time. Thus, we propose a new approach to process multi-date satellite images. Our approach combines knowledge discovery from satellite image databases, and fusion methods in order to find out new and relevant knowledge useful to create decision making and prevision models. The choice of the proposed architecture is motivated by two reasons. First, we need to process imperfection related to the knowledge discovery and interpretation processes. Second, we should integrate new, valid, potentially useful and ultimately understandable knowledge hidden in databases. Our work is based on three concepts (multi-agent systems, case based reasoning and rule based reasoning) and is validated through the use of two optical satellite images coming from Landsat 7 representing the region of Matmata (South of Tunisia) |
Databáze: | OpenAIRE |
Externí odkaz: |