EXD2 Protects Stressed Replication Forks and Is Required for Cell Viability in the Absence of BRCA1/2

Autor: Nieminuszczy, Jadwiga, Broderick, Ronan, Bellani, Marina, Smethurst, Elizabeth, Schwab, Rebekka, Cherdyntseva, Veronica, Evmorfopoulou, Theodora, Lin, Yea-Lih, Minczuk, Michal, Pasero, Philippe, Gagos, Sarantis, Seidman, Michael, Niedzwiedz, Wojciech
Přispěvatelé: The Institute of Cancer Research, London, UK., Minczuk, Michal [0000-0001-8242-1420], Apollo - University of Cambridge Repository, Institut de génétique humaine (IGH), Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)
Jazyk: angličtina
Rok vydání: 2019
Předmět:
Zdroj: Molecular Cell
Molecular Cell, Elsevier, 2019, 75 (3), pp.605-619.e6. ⟨10.1016/j.molcel.2019.05.026⟩
Molecular Cell, Elsevier, 2019, 75, pp.605-619. ⟨10.1016/j.molcel.2019.05.026⟩
ISSN: 1097-2765
Popis: Accurate DNA replication is essential to preserve genomic integrity and prevent chromosomal instability-associated diseases including cancer. Key to this process is the cells' ability to stabilize and restart stalled replication forks. Here, we show that the EXD2 nuclease is essential to this process. EXD2 recruitment to stressed forks suppresses their degradation by restraining excessive fork regression. Accordingly, EXD2 deficiency leads to fork collapse, hypersensitivity to replication inhibitors, and genomic instability. Impeding fork regression by inactivation of SMARCAL1 or removal of RECQ1's inhibition in EXD2-/- cells restores efficient fork restart and genome stability. Moreover, purified EXD2 efficiently processes substrates mimicking regressed forks. Thus, this work identifies a mechanism underpinned by EXD2's nuclease activity, by which cells balance fork regression with fork restoration to maintain genome stability. Interestingly, from a clinical perspective, we discover that EXD2's depletion is synthetic lethal with mutations in BRCA1/2, implying a non-redundant role in replication fork protection.
Databáze: OpenAIRE