Design and validation of structural health monitoring system based on bio-inspired algotithms
Autor: | Anaya Vejar, Maribel |
---|---|
Přispěvatelé: | Universitat Politècnica de Catalunya. Departament de Matemàtiques, Pozo Montero, Francesc, Tibaduiza Burgos, Diego Alexander |
Jazyk: | angličtina |
Rok vydání: | 2016 |
Předmět: | |
Zdroj: | TDX (Tesis Doctorals en Xarxa) UPCommons. Portal del coneixement obert de la UPC Universitat Politècnica de Catalunya (UPC) |
Popis: | Tesi per compendi de publicacions The need of ensure the proper performance of the structures in service has made of structural health monitoring (SHM) a priority research area. Researchers all around the world have focused efforts on the development of new ways to continuous monitoring the structures and analyze the data collected from the inspection process in order to provide information about the current state and avoid possible catastrophes. To perform an effective analysis of the data, the development of methodologies is crucial in order to assess the structures with a low computational cost and with a high reliability. These desirable features can be found in biological systems, and these can be emulated by means of computational systems. The use of bio-inspired algorithms is a recent approach that has demonstrated its effectiveness in data analysis in different areas. Since these algorithms are based in the emulation of biological systems that have demonstrated its effectiveness for several generations, it is possible to mimic the evolution process and its adaptability characteristics by using computational algorithms. Specially in pattern recognition, several algorithms have shown good performance. Some widely used examples are the neural networks, the fuzzy systems and the genetic algorithms. This thesis is concerned about the development of bio-inspired methodologies for structural damage detection and classification. This document is organized in five chapters. First, an overview of the problem statement, the objectives, general results, a brief theoretical background and the description of the different experimental setups are included in Chapter 1 (Introduction). Chapters 2 to 4 include the journal papers published by the author of this thesis. The discussion of the results, some conclusions and the future work can be found on Chapter 5. Finally, Appendix A includes other contributions such as a book chapter and some conference papers. La necesidad de asegurar el correcto funcionamiento de las estructuras en servicio ha hecho de la monitorización de la integridad estructural un área de gran interés. Investigadores en todas las partes del mundo centran sus esfuerzos en el desarrollo de nuevas formas de monitorización contínua de estructuras que permitan analizar e interpretar los datos recogidos durante el proceso de inspección con el objetivo de proveer información sobre el estado actual de la estructura y evitar posibles catástrofes. Para desarrollar un análisis efectivo de los datos, es necesario el desarrollo de metodologías para inspeccionar la estructura con un bajo coste computacional y alta fiabilidad. Estas características deseadas pueden ser encontradas en los sistemas biológicos y pueden ser emuladas mediante herramientas computacionales. El uso de algoritmos bio-inspirados es una reciente técnica que ha demostrado su efectividad en el análisis de datos en diferentes áreas. Dado que estos algoritmos se basan en la emulación de sistemas biológicos que han demostrado su efectividad a lo largo de muchas generaciones, es posible imitar el proceso de evolución y sus características de adaptabilidad al medio usando algoritmos computacionales. Esto es así, especialmente, en reconocimiento de patrones, donde muchos de estos algoritmos brindan excelentes resultados. Algunos ejemplos ampliamente usados son las redes neuronales, los sistemas fuzzy y los algoritmos genéticos. Esta tesis involucra el desarrollo de unas metodologías bio-inspiradas para la detección y clasificación de daños estructurales. El documento está organizado en cinco capítulos. En primer lugar, se incluye una descripción general del problema, los objetivos del trabajo, los resultados obtenidos, un breve marco conceptual y la descripción de los diferentes escenarios experimentales en el Capítulo 1 (Introducción). Los Capítulos 2 a 4 incluyen los artículos publicados en diferentes revistas indexadas. La revisión de los resultados, conclusiones y el trabajo futuro se encuentra en el Capítulo 5. Finalmente, el Anexo A incluye otras contribuciones tales como un capítulo de libro y algunos trabajos publicados en conferencias. |
Databáze: | OpenAIRE |
Externí odkaz: |