INTELIGENT SOFTWARE SYSTEM FOR METABOLIC SYNDROMEDIAGNOSTICS

Autor: Ivanović, Darko
Přispěvatelé: Kupusinac, Aleksandar, Doroslovački, Rade, Ivetić, Dragan, Malbaški, Dušan, Stokić, Edita, Ćulibrk, Dubravko
Jazyk: srbština
Rok vydání: 2018
Předmět:
Zdroj: CRIS UNS
Универзитет у Новом Саду
Popis: Doktorska disertacija razmatra problem algoritamske dijagnostikemetaboličkog sindroma na osnovu lako merljivih parametara: pol,starosna dob, indeks telesne mase, odnos obima struka i visine,sistolni i dijastolni krvni pritisak. U istraživanju su primenjene ieksperimentalno ispitane tri različite metode mašinskog učenja:stabla odluke, linearna regresija i veštačke neuronske mreže.Pokazano je da veštačke neuronske mreže daju visok nivoprediktivnih vrednosti dovoljan za primenu u praksi. Korišćenjemdobijenog rezultata definisan je i implementiran inteligentnisoftverski sistem za dijagnostiku metaboličkog sindroma.
The doctoral dissertation examines the problem of algorithmic diagnostics ofthe metabolic syndrome based on easily measurable parameters: sex, age,body mass index, waist and height ratio, systolic and diastolic bloodpressure. In the study, three different methods of machine learning wereapplied and experimentally examined: decision trees, linear regression andartificial neural networks. It has been shown that artificial neural networksgive a high level of predictive value sufficient to be applied in practice. Usingthe obtained result, an intelligent software system for the diagnosis ofmetabolic syndrome has been defined and implemented.
Databáze: OpenAIRE