Existence of invariant manifolds for coupled parabolic and hyperbolic stochastic partial differential equations
Autor: | Caraballo Garrido, Tomás, Chueshov, Igor D., Langa Rosado, José Antonio |
---|---|
Přispěvatelé: | Universidad de Sevilla. Departamento de Ecuaciones Diferenciales y Análisis Numérico |
Jazyk: | angličtina |
Rok vydání: | 2005 |
Předmět: | |
Zdroj: | idUS. Depósito de Investigación de la Universidad de Sevilla instname |
Popis: | An abstract system of coupled nonlinear parabolic-hyperbolic partial differential equations subjected to additive white noise is considered. The system models temperature dependent or heat generating wave phenomena in a continuum random medium. Under suitable conditions, the existence of an exponentially attracting random invariant manifold for the coupled system is proved, and as a consequence, the system can be reduced to a single stochastic hyperbolic equation with a modified nonlinear term. Finally it is also proved that this random manifold converges to its deterministic counterpart when the intensity of noise tends to zero. |
Databáze: | OpenAIRE |
Externí odkaz: |