A tight-binding atomistic approach for point defects and surfaces applied to the o-Al₁₃Co₄ quasicrystalline approximant

Autor: Bindech, O., Goyhenex, C., Gaudry, É.
Přispěvatelé: Institut de Physique et Chimie des Matériaux de Strasbourg (IPCMS), Université de Strasbourg (UNISTRA)-Centre National de la Recherche Scientifique (CNRS)-Matériaux et nanosciences d'Alsace, Centre National de la Recherche Scientifique (CNRS)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Université de Strasbourg (UNISTRA)-Centre National de la Recherche Scientifique (CNRS)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Université de Strasbourg (UNISTRA)-Réseau nanophotonique et optique, Centre National de la Recherche Scientifique (CNRS)-Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Université de Strasbourg (UNISTRA), Institut Jean Lamour (IJL), Centre National de la Recherche Scientifique (CNRS)-Université de Lorraine (UL)
Jazyk: angličtina
Rok vydání: 2021
Předmět:
Zdroj: Computational Materials Science
Computational Materials Science, Elsevier, 2021, 200, pp.110826. ⟨10.1016/j.commatsci.2021.110826⟩
ISSN: 0927-0256
Popis: International audience; We implemented an N-body potential for the Al–Co interactions and applied it to the o-Al₁₃Co₄ quasicrystalline approximant. We show its ability to model this complex compound in the presence of point and extended defects (atomic vacancies and surfaces). The importance of stress relaxation in vacancy formation is highlighted through the mapping of local pressures in the bulk compound. Thanks to the many body character of the potential, the surfaces could be investigated which was not done before in atomistic studies of this complex phase. Our classical simulations point up the competition between preserving the cohesion by minimizing the number of broken bonds and avoiding the presence of Co atoms at the surface. This study opens the way to large scale simulations of phenomena involving complex metallic alloys in particular at their surfaces.
Databáze: OpenAIRE