Autor: |
Ercegovac, Milos, Imbert, Laurent, Matula, David, Muller, Jean-Michel, Wei, Guoheng |
Přispěvatelé: |
Computer Science Department [UCLA] (UCLA-CS), University of California [Los Angeles] (UCLA), University of California-University of California, Laboratoire d'informatique Fondamentale de Marseille - UMR 6166 (LIF), Université de la Méditerranée - Aix-Marseille 2-Université de Provence - Aix-Marseille 1-Centre National de la Recherche Scientifique (CNRS), School of Engineering, University of California [Merced], Computer arithmetic (ARENAIRE), Inria Grenoble - Rhône-Alpes, Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Laboratoire de l'Informatique du Parallélisme (LIP), École normale supérieure - Lyon (ENS Lyon)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Institut National de Recherche en Informatique et en Automatique (Inria)-Centre National de la Recherche Scientifique (CNRS)-École normale supérieure - Lyon (ENS Lyon)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Centre National de la Recherche Scientifique (CNRS), Laboratoire de l'Informatique du Parallélisme (LIP), Université de Lyon-Université de Lyon-Institut National de Recherche en Informatique et en Automatique (Inria)-Centre National de la Recherche Scientifique (CNRS), INRIA, LIP, University of California (UC)-University of California (UC), University of California [Merced] (UC Merced), École normale supérieure de Lyon (ENS de Lyon)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Institut National de Recherche en Informatique et en Automatique (Inria)-Centre National de la Recherche Scientifique (CNRS)-École normale supérieure de Lyon (ENS de Lyon)-Université Claude Bernard Lyon 1 (UCBL) |
Jazyk: |
angličtina |
Rok vydání: |
1999 |
Předmět: |
|
Zdroj: |
[Research Report] RR-3753, LIP RR-1999-41, INRIA, LIP. 1999 |
Popis: |
The aim of this paper is to accelerate division, square root and square root reciprocal computations, when Goldschmidt method is used on a pipelined multiplier. This is done by replacing the last iteration by the addition of a correcting term that can be looked up during the early iterations. We describe several variants of the Goldschmidt algorithm assuming 4-cycle pipelined multiplier and discuss obtained number of cycles and error achieved. Extensions to other than 4-cycle multipliers are given.; Le but de cet article est l'accélération de la division, et du calcul de racines carrées et d'inverses de racines carrées lorsque la méthode de Goldschmidt est utilisée sur un multiplieur pipe-line. Nous faisons ceci en remplaçant la dernière itération par l'addition d'un terme de correction qui peut être déduit d'une lecture de table effectuée lors des premières itérations. Nous décrivons plusieurs variantes de l'algorithme obtenu en supposant un multiplieur à 4 étages de pipe-line, et donnons pour chaque variante l'erreur obtenue et le nombre de cycles de calcul. Des extensions de ce travail à des multiplieurs dont le nombre d'étages est différent sont présentées. |
Databáze: |
OpenAIRE |
Externí odkaz: |
|