Map Relative Localization Based on Visual and Topological Map Matching

Autor: Asghar, Rabbia, Garzón, Mario, Lussereau, Jerome, Laugier, Christian
Přispěvatelé: Robots coopératifs et adaptés à la présence humaine en environnements dynamiques (CHROMA), Inria Grenoble - Rhône-Alpes, Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-CITI Centre of Innovation in Telecommunications and Integration of services (CITI), Institut National des Sciences Appliquées de Lyon (INSA Lyon), Université de Lyon-Institut National des Sciences Appliquées (INSA)-Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National des Sciences Appliquées de Lyon (INSA Lyon), Université de Lyon-Institut National des Sciences Appliquées (INSA)-Université de Lyon-Institut National des Sciences Appliquées (INSA), Inria Chroma
Jazyk: angličtina
Rok vydání: 2019
Předmět:
Zdroj: [Technical Report] Inria Chroma. 2019
Popis: Accurate and reliable localization is crucial to autonomous vehicle navigation and driver assistance systems. This paper presents a novel approach for online vehicle local-ization in a digital map. Two distinct map matching algorithms are proposed: i) Iterative Closest Point (ICP) based lane level map matching is performed with visual lane tracker and grid map ii) decision-rule based approach is used to perform topological map matching. Results of both the map matching algorithms are fused together with GPS and dead reckoning using Extended Kalman Filter to estimate vehicle's pose relative to the map. The proposed approach has been validated on real life conditions on a road equipped vehicle. Detailed analysis of the experimental results show improved localization using the two aforementioned map matching algorithms.
Databáze: OpenAIRE