Knowledge-Based Fast Evaluation for Evolutionary Learning
Autor: | Giráldez Rojo, Raúl, Aguilar Ruiz, Jesús Salvador, Riquelme Santos, José Cristóbal |
---|---|
Přispěvatelé: | Universidad de Sevilla. Departamento de Lenguajes y Sistemas Informáticos, Comisión Interministerial de Ciencia y Tecnología (CICYT). España |
Jazyk: | angličtina |
Rok vydání: | 2005 |
Předmět: | |
Zdroj: | idUS. Depósito de Investigación de la Universidad de Sevilla instname |
Popis: | The increasing amount of information available is encouraging the search for efficient techniques to improve the data mining methods, especially those which consume great computational resources, such as evolutionary computation.Efficacy and efficiency are two critical aspects for knowledge-based techniques.The incorporation of knowledge into evolutionary algorithms (EAs) should provide either better solutions (efficacy) or the equivalent solutions in shorter time (efficiency), regarding the same evolutionary algorithm without incorporating such knowledge. In this paper, we categorize and summarize some of the incorporation of knowledge techniques for evolutionary algorithms and present a novel data structure, called efficient evaluation structure (EES), which helps the evolutionary algorithm to provide decision rules using less computational resources.The EES-based EA is tested and compared to another EA system and the experimental results show the quality of our approach, reducing the computational cost about 50%, maintaining the global accuracy of the final set of decision rules. CICYT TIN2004-00159 |
Databáze: | OpenAIRE |
Externí odkaz: |