Clustering Sargassum Mats from Earth Observation Data

Autor: Glize, Estèle, Huguet, Marie-José, Lucas, Marc, Sutton, Marion, Trédan, Gilles
Přispěvatelé: Équipe Recherche Opérationnelle, Optimisation Combinatoire et Contraintes (LAAS-ROC), Laboratoire d'analyse et d'architecture des systèmes (LAAS), Université Toulouse Capitole (UT Capitole), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut National des Sciences Appliquées - Toulouse (INSA Toulouse), Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Institut National des Sciences Appliquées (INSA)-Université Toulouse - Jean Jaurès (UT2J), Université de Toulouse (UT)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique (Toulouse) (Toulouse INP), Université de Toulouse (UT)-Université Toulouse Capitole (UT Capitole), Université de Toulouse (UT), Collecte Localisation Satellites (CLS), Institut Français de Recherche pour l'Exploitation de la Mer (IFREMER)-Centre National d'Études Spatiales [Toulouse] (CNES), Équipe Tolérance aux fautes et Sûreté de Fonctionnement informatique (LAAS-TSF), Université Toulouse - Jean Jaurès (UT2J)-Université Toulouse 1 Capitole (UT1), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Institut National des Sciences Appliquées - Toulouse (INSA Toulouse), Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Institut National Polytechnique (Toulouse) (Toulouse INP), Université Fédérale Toulouse Midi-Pyrénées-Université Toulouse - Jean Jaurès (UT2J)-Université Toulouse 1 Capitole (UT1), Université Fédérale Toulouse Midi-Pyrénées, Huguet, Marie-Jose
Jazyk: angličtina
Rok vydání: 2020
Předmět:
Zdroj: Machine Learning for Earth Observation-MACLEAN 2020
Machine Learning for Earth Observation-MACLEAN 2020, Sep 2020, Ghent, Belgium
Popis: International audience; Sargassum seaweed forms large floating mats drifting on the oceans. These mats are increasingly beaching on Caribbean islands, threatening the local wildlife and economies. This paper focuses on their tracking from space, in order to monitor these mats. More specifically, we focus on clustering sargassum mats on satellite images. This constitutes an important building block of the sargassum monitoring system, which then predicts the drift of those clusters to anticipate beachings and warn the local authorities. The difficulty of the clustering operation comes from the noisy nature of input data: image artefacts, partial cloud occlusion, mats discontinuities due to sea conditions, and the difficulty of acquiring ground truth data. This paper details our approach to overcome those challenges. We propose a method (hereafter named Sargassum Mats Detection Method-SMDM) that improves the mats identification by combining a first artefact detection step, a tailored clustering algorithm and a region growing algorithm.
Databáze: OpenAIRE