Lattice Boltzmann Method-Based Simulations of Pollutant Dispersion and Urban Physics

Autor: Jacob, Jérôme, Merlier, Lucie, Marlow, Felix, Sagaut, Pierre
Přispěvatelé: Laboratoire de Mécanique, Modélisation et Procédés Propres (M2P2), Aix Marseille Université (AMU)-École Centrale de Marseille (ECM)-Centre National de la Recherche Scientifique (CNRS), Centre National de la Recherche Scientifique (CNRS)-École Centrale de Marseille (ECM)-Aix Marseille Université (AMU)
Jazyk: angličtina
Rok vydání: 2021
Předmět:
Zdroj: Atmosphere
Volume 12
Issue 7
Atmosphere, 2021, 12 (7), pp.833. ⟨10.3390/atmos12070833⟩
Atmosphere, MDPI 2021, 12 (7), pp.833. ⟨10.3390/atmos12070833⟩
Atmosphere, Vol 12, Iss 833, p 833 (2021)
ISSN: 2073-4433
DOI: 10.3390/atmos12070833
Popis: International audience; Mesocale atmospheric flows that develop in the boundary layer or microscale flows that develop in urban areas are challenging to predict, especially due to multiscale interactions, multiphysical couplings, land and urban surface thermal and geometrical properties and turbulence. However, these different flows can indirectly and directly affect the exposure of people to deteriorated air quality or thermal environment, as well as the structural and energy loads of buildings. Therefore, the ability to accurately predict the different interacting physical processes determining these flows is of primary importance. To this end, alternative approaches based on the lattice Boltzmann method (LBM) wall model large eddy simulations (WMLESs) appear particularly interesting as they provide a suitable framework to develop efficient numerical methods for the prediction of complex large or smaller scale atmospheric flows. In particular, this article summarizes recent developments and studies performed using the hybrid recursive regularized collision model for the simulation of complex or/and coupled turbulent flows. Different applications to the prediction of meteorological humid flows, urban pollutant dispersion, pedestrian wind comfort and pressure distribution on urban buildings including uncertainty quantification are especially reviewed. For these different applications, the accuracy of the developed approach was assessed by comparison with experimental and/or numerical reference data, showing a state of the art performance. Ongoing developments focus now on the validation and prediction of indoor environmental conditions including thermal mixing and pollutant dispersion in different types of rooms equipped with heat, ventilation and air conditioning systems.
Databáze: OpenAIRE