Measure of frailty and fall detection for helping elderly people to stay at home
Autor: | Dubois, Amandine |
---|---|
Přispěvatelé: | Autonomous intelligent machine (MAIA), Inria Nancy - Grand Est, Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Department of Complex Systems, Artificial Intelligence & Robotics (LORIA - AIS), Laboratoire Lorrain de Recherche en Informatique et ses Applications (LORIA), Centre National de la Recherche Scientifique (CNRS)-Université de Lorraine (UL)-Institut National de Recherche en Informatique et en Automatique (Inria)-Centre National de la Recherche Scientifique (CNRS)-Université de Lorraine (UL)-Institut National de Recherche en Informatique et en Automatique (Inria)-Laboratoire Lorrain de Recherche en Informatique et ses Applications (LORIA), Centre National de la Recherche Scientifique (CNRS)-Université de Lorraine (UL)-Institut National de Recherche en Informatique et en Automatique (Inria)-Centre National de la Recherche Scientifique (CNRS)-Université de Lorraine (UL), Université de Lorraine, François Charpillet, Centre National de la Recherche Scientifique (CNRS)-Université de Lorraine (UL)-Institut National de Recherche en Informatique et en Automatique (Inria), UL, Thèses, Institut National de Recherche en Informatique et en Automatique (Inria)-Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS), Dubois, Amandine, Institut National de Recherche en Informatique et en Automatique (Inria)-Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche en Informatique et en Automatique (Inria)-Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS)-Laboratoire Lorrain de Recherche en Informatique et ses Applications (LORIA), Institut National de Recherche en Informatique et en Automatique (Inria)-Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS)-Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS) |
Jazyk: | francouzština |
Rok vydání: | 2014 |
Předmět: |
[INFO.INFO-AI] Computer Science [cs]/Artificial Intelligence [cs.AI]
[SDV.MHEP] Life Sciences [q-bio]/Human health and pathology [INFO.INFO-OH]Computer Science [cs]/Other [cs.OH] Modèle de Markov caché Locomotion humaine Chutes chez la personne âgée-Télédétection Analyse de la marche Hidden Markov Model Caméra de profondeur Intelligence ambiante [INFO.INFO-AI]Computer Science [cs]/Artificial Intelligence [cs.AI] [INFO.INFO-OH] Computer Science [cs]/Other [cs.OH] Reconnaissance d'activité Capteurs optiques Activity recognition Markov Depth camera Gait analysis [SDV.MHEP]Life Sciences [q-bio]/Human health and pathology Processus de |
Zdroj: | Intelligence artificielle [cs.AI]. Université de Lorraine, 2014. Français Autre [cs.OH]. Université de Lorraine, 2014. Français. ⟨NNT : 2014LORR0095⟩ Intelligence artificielle [cs.AI]. Université de Lorraine, 2014. Français. ⟨NNT : ⟩ |
Popis: | Population ageing is a major issue for society in the next years, especially because of the increase of dependent people. The limits in specialized institutes capacity and the wish of the elderly to stay at home as long as possible explain a growing need for new specific at home services. Technologies can help securing the person at home by detecting falls. They can also help in the evaluation of the frailty for preventing future accidents. This work concerns the development of low cost ambient systems for helping the stay at home of elderly. Depth cameras allow analysing in real time the displacement of the person. We show that it is possible to recognize the activity of the person and to measure gait parameters from the analysis of simple feature extracted from depth images. Activity recognition is based on Hidden Markov Models and allows detecting at risk behaviours and falls. When the person is walking, the analysis of the trajectory of her centre of mass allows measuring gait parameters that can be used for frailty evaluation. This work is based on laboratory experimentations for the acquisition of data used for models training and for the evaluation of the results. We show that some of the developed Hidden Markov Models are robust enough for classifying the activities. We also evaluate de precision of the gait parameters measurement in comparison to the measures provided by an actimetric carpet. We believe that such a system could be installed in the home of the elderly because it relies on a local processing of the depth images. It would be able to provide daily information on the person activity and on the evolution of her gait parameters that are useful for securing her and evaluating her frailty. Le vieillissement de la population est un enjeu majeur pour les prochaines années en raison, notamment, de l'augmentation du nombre de personnes dépendantes. La question du maintien à domicile de ces personnes se pose alors, du fait de l'impossibilité pour les instituts spécialisés de les accueillir toutes et, surtout, de la volonté des personnes âgées de rester chez elles le plus longtemps possible. Or, le développement de systèmes technologiques peut aider à résoudre certains problèmes comme celui de la sécurisation en détectant les chutes, et de l'évaluation du degré d'autonomie pour prévenir les accidents. Plus particulièrement, nous nous intéressons au développement des systèmes ambiants, peu coûteux, pour l'équipement du domicile. Les caméras de profondeur permettent d'analyser en temps réel les déplacements de la personne. Nous montrons dans cette thèse qu'il est possible de reconnaître l'activité de la personne et de mesurer des paramètres de sa marche à partir de l'analyse de caractéristiques simples extraites des images de profondeur. La reconnaissance d'activité est réalisée à partir des modèles de Markov cachés, et permet en particulier de détecter les chutes et des activités à risque. Lorsque la personne marche, l'analyse de la trajectoire du centre de masse nous permet de mesurer les paramètres spatio-temporels pertinents pour l'évaluation de la fragilité de la personne. Ce travail a été réalisé sur la base d'expérimentations menées en laboratoire, d'une part, pour la construction des modèles par apprentissage automatique et, d'autre part, pour évaluer la validité des résultats. Les expérimentations ont montré que certains modèles de Markov cachés, développés pour ce travail, sont assez robustes pour classifier les différentes activités. Nous donnons, également dans cette thèse, la précision, obtenue avec notre système, des paramètres de la marche en comparaison avec un tapis actimètrique. Nous pensons qu'un tel système pourrait facilement être installé au domicile de personnes âgées, car il repose sur un traitement local des images. Il fournit, au quotidien, des informations sur l'analyse de l'activité et sur l'évolution des paramètres de la marche qui sont utiles pour sécuriser et évaluer le degré de fragilité de la personne. |
Databáze: | OpenAIRE |
Externí odkaz: |