Estimating Source Term Parameters through Probabilistic Bayesian inference: An Approach based on an Adaptive Multiple Importance Sampling Algorithm

Autor: Rajaona, H., Armand, P., François SEPTIER, Delignon, Y., Olry, C., Moussafir, J.
Přispěvatelé: LAGIS-SI, Laboratoire d'Automatique, Génie Informatique et Signal (LAGIS), Université de Lille, Sciences et Technologies-Centrale Lille-Centre National de la Recherche Scientifique (CNRS)-Université de Lille, Sciences et Technologies-Centrale Lille-Centre National de la Recherche Scientifique (CNRS), Centrale Lille, DAM Île-de-France (DAM/DIF), Direction des Applications Militaires (DAM), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA), Institut TELECOM/TELECOM Lille1, Institut Mines-Télécom [Paris] (IMT), ARIA Technologies
Jazyk: angličtina
Rok vydání: 2014
Předmět:
Zdroj: 16th International Conference on Harmonisation within Atmospheric Dispersion Modelling for Regulatory Purposes (HARMO 16)
16th International Conference on Harmonisation within Atmospheric Dispersion Modelling for Regulatory Purposes (HARMO 16), Sep 2014, Varna, Bulgaria. pp.1-5
Scopus-Elsevier
Popis: International audience; This paper presents an adaptive approach based on probabilistic Bayesian inference to estimate the parameters of an atmospheric pollution source term. After introducing the problem and assessing the computational framework, we present an Importance Sampling based algorithm called Adaptive Multiple Importance Sampling (AMIS). It performs an efficient calculation of the source parameter posterior distribution by iteratively upgrading the proposal's parameters and recycling all generations of weighted samples, thus allowing a faster convergence and reducing the number of necessary iterations. We highlight the results of the AMIS by comparing it to a MCMC estimation in a simple example.
Databáze: OpenAIRE