Machine Translation for English--Inuktitut with Segmentation, Data Acquisition and Pre-Training
Autor: | Christian Roest, Lukas Edman, Gosse Minnema, Kevin Kelly, Jennifer Spenader, Antonio Toral |
---|---|
Přispěvatelé: | Artificial Intelligence |
Zdroj: | University of Groningen Proceedings of the Fifth Conference on Machine Translation (WMT), 274-281 STARTPAGE=274;ENDPAGE=281;TITLE=Proceedings of the Fifth Conference on Machine Translation (WMT) |
Popis: | Translating to and from low-resource polysynthetic languages present numerous challenges for NMT. We present the results of our systems for the English--Inuktitut language pair for the WMT 2020 translation tasks. We investigated the importance of correct morphological segmentation, whether or not adding data from a related language (Greenlandic) helps, and whether using contextual word embeddings improves translation. While each method showed some promise, the results are mixed. |
Databáze: | OpenAIRE |
Externí odkaz: |