Mathematische Modellierung eines Raumes zur Nutzung in einem dynamischen Cyber-Physischen System

Autor: Papadoudis, Jan
Jazyk: němčina
Rok vydání: 2017
Předmět:
Zdroj: Papadoudis, J 2017, Mathematische Modellierung eines Raumes zur Nutzung in einem dynamischen Cyber-Physischen System . Schriftenreihe zur Produkt-und Prozessinnovation, Bd. 9, 1 Aufl., Sierke Verlag, Göttingen .
Papadoudis, J 2017, Mathematische Modellierung eines Raumes zur Nutzung in einem dynamischen Cyber-Physischen System . Universität Lüneburg-Institut für Produkt-und Prozessinnovation, Bd. 9, Schriftenreihe zur Produkt-und Prozessinnovation, Bd. 9, 1 Aufl., Sierke Verlag, Göttingen .
Popis: Cyber-Physische Systeme (CPS) gewinnen in vielen Bereichen an Bedeutung und sind ein integraler Bestandteil von Industrie 4.0. Die Fähigkeit autonomer Systeme aus der Interpretation der Umgebung Handlungen ableiten zu können, bildet den Kerngedanken eines CPS. Aus diesem Grund wurde ein einheitliches Modell entwickelt, welches den Zustand der Umgebung abbilden und aus dem eine statistische Zustandsvorhersage abgeleitet werden kann, sodass beliebige Anwendungen auf dem Modell aufbauen können. Die notwendige Bedingung zur Erstellung eines Modells, ist die sensorische Erfassung der Umgebung und die Repräsentation in einer Karte. Das entwickelte Modell baut auf einer metrischen Karte auf und erweitert diese um zwei Matrizen, die den Zustand beschreiben. Zuerst wurde dazu ermittelt, welche ZustÄnde eines Raumes erfasst werden müssen, um diesen zu modellieren. Dabei wurde der Ansatz zu Grunde gelegt, dass der Zustand des Raumes durch die Zustände aller sich darin befindlichen Objekte hinreichend bestimmt ist. Als Zustand eines Objektes wurde das Tupel, bestehend aus den Koordinaten, Geschwindigkeitskomponenten und der Orientierung definiert. Zusätzlich wurde jedem dieser Werte eine Unsicherheit zugewiesen. Zur Bestimmung dieses Zustands ist es notwendig, dass Distanzinformationen aus den Sensordaten des Systems ermittelt werden können. Aus diesem Grund wurde auf eine Microsoft Kinect zurückgegriffen, da diese einfach zu integrieren ist und zusätzlich RGB-Daten zur Verfügung stehen und somit mit einem Sensor alle Anforderungen abgedeckt werden können. Das entwickelte Modell beruht auf den zwei entwickelten Matrizen PI und SM. PI, die die Aufenthaltswahrscheinlichkeit eines Objektes beschreibt und SM, die den durchschnittlichen Zustand beschreibt. Beide Matrizen bauen auf einer metrischen Karte auf und geben somit für jeden Knotenpunkt einen bestimmten Wert an. Die Werte von PI berechnen sich durch eine gewichtete Zeitreihenanalyse der Beobachtungen eines Objektes an einem bestimmten Ort (Knotenpunkt). Durch den Vergleich der Werte mit denen der Umgebung, lassen sich daraus konkrete Aufenthaltswahrscheinlichkeiten ableiten. Die Matrix SM gibt durch eine analoge Analyse, den durchschnittlichen Zustand der Objekte an dem entsprechenden Ort an. Da verschiedenartige Objekte unterschiedliche Verhalten aufweisen, ist eine Klassifizierung auf Basis der Beweglichkeit eines Objektes eingeführt worden und für jede Klasse die separate Matrizen PI und SM bestimmt. Somit lassen sich aus den Beobachtungen zuverlässiger Vorhersagen generieren. Die Zustandsvorhersage basiert auf einem mehrstufigen Verfahren. Zuerst wird ein neuer Zustand auf Basis eines generellen Bewegungsmodells ermittelt und mit einer entsprechenden Unsicherheit behaftet. In der Umgebung des neuen Zustands, werden konkrete Aufenthaltswahrscheinlichkeiten aus PI berechnet und anschließend mit dem Zustand und SM verrechnet. Abschließend wird eine Unsicherheit der Vorhersage berechnet. Für längere Vorhersagen wird dieses Verfahren mehrfach wiederholt, es sei denn an einer Stelle wird eine signifikante Änderung des Zustands ermittelt (beispielsweise eine Richtungsänderung). In diesem Fall werden mit Hilfe einer Markov-Kette mehrere mögliche Zustände weiterverfolgt um die Vorhersage zu verbessern. Das entwickelte Modell, mit dem Vorhersagesystem wurde abschließend in Testszenarien mit verschiedenen Objekten getestet. Dabei konnte nachgewiesen werden, dass die Vorhersage innerhalb der Auflösung der metrischen Karte liegt. Somit konnte mit dem Modell eine Grundlage für autonome Systeme geschaffen werden, das in verschiedenen Anwendungen eingesetzt werden kann um ein CPS aufzubauen.
Databáze: OpenAIRE