Higher order noise correlation tomography of the Pyrenees. Multi-scale application

Autor: Brives, Jacques
Přispěvatelé: Cycle sismique et déformations transitoires, Institut des Sciences de la Terre (ISTerre), Institut national des sciences de l'Univers (INSU - CNRS)-Institut de recherche pour le développement [IRD] : UR219-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)-Université Gustave Eiffel-Université Grenoble Alpes (UGA)-Institut national des sciences de l'Univers (INSU - CNRS)-Institut de recherche pour le développement [IRD] : UR219-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)-Université Gustave Eiffel-Université Grenoble Alpes (UGA), Université Grenoble Alpes [2020-....], Laurent Stehly, Pierre Boué, STAR, ABES, Institut national des sciences de l'Univers (INSU - CNRS)-Institut de recherche pour le développement [IRD] : UR219-Université Grenoble Alpes (UGA)-Université Gustave Eiffel-Centre National de la Recherche Scientifique (CNRS)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Institut national des sciences de l'Univers (INSU - CNRS)-Institut de recherche pour le développement [IRD] : UR219-Université Grenoble Alpes (UGA)-Université Gustave Eiffel-Centre National de la Recherche Scientifique (CNRS)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])
Jazyk: francouzština
Rok vydání: 2020
Předmět:
Zdroj: Sciences de la Terre. Université Grenoble Alpes [2020-..], 2020. Français. ⟨NNT : 2020GRALU030⟩
Popis: Imaging the structures in depth of the Pyrenees mountain range is a long-standing subject of study with the aim both of gaining a better understanding of the geodynamic processes responsible for its genesis, and also of enabling us to improve the prevention of seismic risks associated with the dynamics of these structures. The objective of this study is to use ambient seismic noise tomography to obtain 3D images of the Pyrenean region at two different scales. Firstly, at the crustal scale, in order to constrain the large structures in depth of the orogen and their continuities in space. Secondly, on the scale of a sedimentary basin characteristic of the complex geological history of the Pyrenees, the Mauléon-Arzacq basin located in the north-west of the chain.Here we will use the method of correlation of the ambient seismic noise (noted C1) which is an efficient way to retrieve the propagation times of surface waves between a pair of seismometers. This method is now widely used for seismic tomography and temporal monitoring of seismogenic structures. In this study, we further develop this noise correlation method and propose two innovative methodologies called high order correlations (C2 and C3), corresponding to iterations of noise correlations. These methods allow us to improve both the quality and the quantity of surface wave dispersion measurements between pairs of synchronous, but also asynchronous, i.e. not operating at the same time. By using these innovative methods, we have considerably improved the spatial coverage of the models in and around the Pyrenees.Subsequently, using a Bayesian probabilistic inversion scheme, we obtained two new high-resolution models of shear wave velocities, also including the probability densities of the layer boundaries (or seismic interfaces).At large scale, the Pyrenean crustal model shows a subduction of the Iberian plate under the Eurasian plate in the western part of the Pyrenees which disappears in the eastern part. The use of higher-order correlation has made it possible to extend it to the Bay of Biscay and has made it possible to image its structures for the first time in a Vs model of this scale. In particular, we have been able to image fast velocity anomalies that lie close to the surface at the levels of the Mauléon and Saint-Gaudens gravimetric anomalies. This result brings an additional element to answer one of the great latent questions of the Pyrenees, namely the source of these gravimetric anomalies. These results confirm the hypothesis that they are caused by the presence of scales of dense material close to the surface.On a smaller scale, the model of the Mauléon-Arzacq basin allowed to reveal in detail the deep structure of their substratum but also to image the clear limit formed by the North Pyrenean Frontal Overlap between these two basins.
Imager les structures en profondeur de la chaîne des Pyrénées est un sujet d’étude de longue date ayant pour but à la fois de mieux connaître les processus géodynamiques responsable de sa genèse, mais aussi de nous permettre d’améliorer la prévention des risques sismiques associés à la dynamique de ces structures. L’objectif de cette étude est d’utiliser la tomographie de bruit sismique ambiant pour obtenir des images 3D de la région Pyrénéenne à deux échelles différentes. Premièrement, à l’échelle crustale, afin de contraindre les grandes structures en profondeur de l’orogène et leurs continuités dans l’espace. Deuxièmement, à l’échelle d’un bassin sédimentaire caractéristique de l’histoire géologique complexe des Pyrénées, le bassin de Mauléon-Arzacq situé au Nord-Ouest de la chaîne.Nous allons ici utiliser la méthode de corrélation du bruit sismique ambiant (notée C1) qui est un moyen efficace pour retrouver les temps de propagation des ondes de surface entre une paire de sismomètre. Cette méthode est maintenant largement utilisée pour la tomographie sismique et la surveillance temporelle de structures sismogènes. Dans cette étude, nous poussons plus loin cette méthode de corrélation de bruit et proposons deux méthodologies innovantes appelées corrélations d'ordre supérieur (C2 et C3), correspondant à des itérations de corrélations de bruit. Ces méthodes nous permettent d'améliorer à la fois la qualité et la quantité des mesures de dispersion des ondes de surface entre les paires de stations synchrones, mais aussi asynchrones, c’est-à-dire qui n’ont pas fonctionné en même temps. En utilisant ces méthodes innovantes, nous avons amélioré considérablement la couverture spatiale des modèles à l'intérieur et autour des Pyrénées.Par la suite, en utilisant un schéma d'inversion probabiliste bayésien, nous avons obtenu deux nouveaux modèles haute résolution de vitesse des ondes de cisaillement, incluant aussi les densités de probabilité des limites de couches (ou interfaces sismiques).À grande échelle, le modèle crustale Pyrénéen montre une subduction de la plaque ibérique sous la plaque eurasienne dans la partie Ouest des Pyrénées qui disparaît dans la partie Est. L’utilisation de corrélation d’ordre supérieur a permis de l’étendre au golfe de Gascogne et a permis d'imager ses structures pour la première fois dans un modèle Vs de cette échelle. En particulier, nous avons pu imager des anomalies de vitesses rapides qui se trouvent proche de la surface aux niveaux des anomalies gravimétriques de Mauléon et de Saint-Gaudens. Ce résultat apporte un élément supplémentaire pour répondre à l'une des grandes questions latentes des Pyrénées, à savoir la source de ces anomalies gravimétriques. Ces résultats confortent l'hypothèse qu’elles sont causées par la présence d'écailles de matériel dense proche de la surface.À plus petite échelle, le modèle du bassin de Mauléon-Arzacq a permis de révéler en détail la structure en profondeur de leur substratum mais aussi d'imager la limite nette que forme le Chevauchement Frontal Nord Pyrénéen entre ces deux bassins.
Databáze: OpenAIRE