Turing universality of the incompressible Euler equations and a conjecture of Moore

Autor: Miranda Galcerán, Eva|||0000-0001-9518-5279, Cardona, Robert, Peralta-Salas, Daniel
Přispěvatelé: Universitat Politècnica de Catalunya. Departament de Matemàtiques, Universitat Politècnica de Catalunya. GEOMVAP - Geometria de Varietats i Aplicacions
Jazyk: angličtina
Rok vydání: 2021
Předmět:
Zdroj: UPCommons. Portal del coneixement obert de la UPC
Universitat Politècnica de Catalunya (UPC)
Popis: In this article we construct a compact Riemannian manifold of high dimension on which the time dependent Euler equations are Turing complete. More precisely, the halting of any Turing machine with a given input is equivalent to a certain global solution of the Euler equations entering a certain open set in the space of divergence-free vector fields. In particular, this implies the undecidability of wether a solution to the Euler equations with an initial datum will reach a certain open set or not in the space of divergence-free fields. This result goes one step further in Tao’s programme to study the blowup problem for the Euler and Navier-Stokes equations using fluid computers. As a remarkable spin-off, our method of proof allows us to give a counterexample to a conjecture of Moore dating back to 1998 on the non-existence of analytic maps on compact manifolds that are Turing complete. Robert Cardona acknowledges financial support from the Spanish Ministry of Economy and Competitiveness, through the María de Maeztu Programme for Units of Excellence in R& D (MDM-2014-0445) via an FPI grant. Robert Cardona and Eva Miranda are partially supported by the grants MTM2015-69135- P/FEDER and PID2019-103849GB-I00 / AEI / 10.13039/501100011033, and AGAUR grant 2017SGR932. Eva Miranda is supported by the Catalan Institution for Research and Advanced Studies via an ICREA Academia Prize 2016. Daniel Peralta-Salas is supported by the grants MTM PID2019-106715GB-C21 (MICINN) and Europa Excelencia EUR2019-103821 (MCIU). This work was partially supported by the ICMAT– Severo Ochoa grant CEX2019-000904-S.
Databáze: OpenAIRE