Algorithmic Skeletons Using Template Metaprogramming

Autor: Alexis Pereda, Hill, David R. C., Claude Mazel, Bruno Bachelet
Přispěvatelé: Laboratoire d'Informatique, de Modélisation et d'Optimisation des Systèmes (LIMOS), Ecole Nationale Supérieure des Mines de St Etienne-Centre National de la Recherche Scientifique (CNRS)-Université Clermont Auvergne [2017-2020] (UCA [2017-2020]), Pereda, Alexis, Ecole Nationale Supérieure des Mines de St Etienne-Centre National de la Recherche Scientifique (CNRS)-Université Clermont Auvergne (UCA), Ecole Nationale Supérieure des Mines de St Etienne-Université Clermont Auvergne [2017-2020] (UCA [2017-2020])-Centre National de la Recherche Scientifique (CNRS), Ecole Nationale Supérieure des Mines de St Etienne (ENSM ST-ETIENNE)-Université Clermont Auvergne [2017-2020] (UCA [2017-2020])-Centre National de la Recherche Scientifique (CNRS)
Jazyk: angličtina
Rok vydání: 2019
Předmět:
Zdroj: 14th International Student Conference on Advanced Science and Technology (ICAST)
14th International Student Conference on Advanced Science and Technology (ICAST), Nov 2019, Kumamoto, Japan. pp.204-205
HAL
Popis: International audience; Algorithmic skeletons, introduced by Cole, were designed to ease the development of parallel software. This article presents a way to represent and implement algorithmic skeletons using bones - atomic elements - to build structures, and data flow graphs to link the structures. We design and implement a library relying on Template Metaprogramming (TMP) to describe and use both skeletons and links to produce automatically either a sequential or a parallel implementation of the algorithm, aiming slight to no run-time overhead compared to handwritten implementations. Performance results of this library, applied to metaheuristics in Operations Research (OR), are presented to show that this approach induces negligible run-time overhead.
Databáze: OpenAIRE