IUPAC critical evaluation of the rotational-vibrational spectra of water vapor. Part II: Energy levels and transition wavenumbers for HD16O, HD17O, and HD18O

Autor: Tennyson, Jonathan, Bernath, P. F., Brown, Linda, Campargue, Alain, Csaszar, Attila G, Daumont, L., Gamache, Robert, Hodges, J.T., Naumenko, O. V., Polyansky, O., Rothman, L. S., Toth, R.-A., Vandaele, Ann Carine, Zobov, N.F., Fally, S., Fazliev, A. Z., Furtenbacher, T., Gordon, I.E., Hu, Shui-Ming, Mikhailenko, S. N., Voronin, Boris A
Přispěvatelé: Department of Physics and Astronomy [UCL London], University College of London [London] ( UCL ), Jet Propulsion Laboratory ( JPL ), California Institute of Technology ( CALTECH ) -NASA, LIPhy-LAME, Laboratoire Interdisciplinaire de Physique [Saint Martin d’Hères] ( LIPhy ), Université Joseph Fourier - Grenoble 1 ( UJF ) -Centre National de la Recherche Scientifique ( CNRS ) -Université Joseph Fourier - Grenoble 1 ( UJF ) -Centre National de la Recherche Scientifique ( CNRS ), Department of Environmental, Earth, and Atmospheric Sciences [Lowell], University of Massachusetts at Lowell ( UMass Lowell ), Open Laboratory of Bond Selective Chemistry, University of Science and Technology of China [Hefei] ( USTC ), Department of Chemistry [Waterloo], University of Waterloo [Waterloo], Department of Chemistry [York, UK], University of York [York, UK], Laboratoire de Spectrométrie Physique ( LSP ), Université Joseph Fourier - Grenoble 1 ( UJF ) -Centre National de la Recherche Scientifique ( CNRS ), Laboratory of Molecular Spectroscopy, Institute of Chemistry, Groupe de spectrométrie moléculaire et atmosphérique - UMR 7331 ( GSMA ), Université de Reims Champagne-Ardenne ( URCA ) -Centre National de la Recherche Scientifique ( CNRS ), Physics Laboratory ( NIST ), National Institute of Standards and Technology [Gaithersburg] ( NIST ), Institute of Atmospheric Optics ( IAO ), Siberian Branch of the Russian Academy of Sciences ( SB RAS ), Institute of Applied Physics of RAS, Russian Academy of Sciences [Moscow] ( RAS ), Atomic and Molecular Physics Division ( AMPD ), Harvard-Smithsonian Center for Astrophysics, Belgian Institute for Space Aeronomy / Institut d'Aéronomie Spatiale de Belgique ( BIRA-IASB ), Institut of Applied Physics ( IAP ), Service de Chimie Quantique et Photophysique, Université Libre de Bruxelles [Bruxelles] ( ULB ), Institute of Atmospheric Optics SB RAS, Eötvös Loránd University ( ELTE ), V.E. Zuev Institute of Atmospheric Optics ( IAO ), University College of London [London] (UCL), Jet Propulsion Laboratory (JPL), NASA-California Institute of Technology (CALTECH), LAsers, Molécules et Environnement (LAME-LIPhy), Laboratoire Interdisciplinaire de Physique [Saint Martin d’Hères] (LIPhy), Centre National de la Recherche Scientifique (CNRS)-Université Joseph Fourier - Grenoble 1 (UJF)-Centre National de la Recherche Scientifique (CNRS)-Université Joseph Fourier - Grenoble 1 (UJF), University of Massachusetts [Lowell] (UMass Lowell), University of Massachusetts System (UMASS)-University of Massachusetts System (UMASS), University of Science and Technology of China [Hefei] (USTC), Laboratoire de Spectrométrie Physique (LSP), Université Joseph Fourier - Grenoble 1 (UJF)-Centre National de la Recherche Scientifique (CNRS), Groupe de spectrométrie moléculaire et atmosphérique (GSMA), Université de Reims Champagne-Ardenne (URCA)-Centre National de la Recherche Scientifique (CNRS), Physics Laboratory (NIST), National Institute of Standards and Technology [Gaithersburg] (NIST), V.E. Zuev Institute of Atmospheric Optics (IAO), Siberian Branch of the Russian Academy of Sciences (SB RAS), Russian Academy of Sciences [Moscow] (RAS), Atomic and Molecular Physics Division [Cambridge] (AMP), Harvard-Smithsonian Center for Astrophysics (CfA), Harvard University [Cambridge]-Smithsonian Institution-Harvard University [Cambridge]-Smithsonian Institution, Belgian Institute for Space Aeronomy / Institut d'Aéronomie Spatiale de Belgique (BIRA-IASB), Institut of Applied Physics (IAP), Université libre de Bruxelles (ULB), Eötvös Loránd University (ELTE)
Jazyk: angličtina
Rok vydání: 2010
Předmět:
Zdroj: Journal of Quantitative Spectroscopy & Radiative transfer
Journal of Quantitative Spectroscopy & Radiative transfer, 2010, 111, pp.2160-2184. 〈10.1016/J.JQSRT.2010.06.012〉
Journal of quantitative spectroscopy & radiative transfer, 111 (15
Journal of Quantitative Spectroscopy and Radiative Transfer
Journal of Quantitative Spectroscopy and Radiative Transfer, Elsevier, 2010, 111, pp.2160. 〈10.1016/j.jqsrt.2010.06.012〉
Journal of Quantitative Spectroscopy and Radiative Transfer, Elsevier, 2010, 111, pp.2160-2184. ⟨10.1016/J.JQSRT.2010.06.012⟩
Journal of Quantitative Spectroscopy and Radiative Transfer, Elsevier, 2010, 111, pp.2160. ⟨10.1016/j.jqsrt.2010.06.012⟩
ISSN: 0022-4073
DOI: 10.1016/J.JQSRT.2010.06.012〉
Popis: This is the second of a series of articles reporting critically evaluated rotational-vibrational line positions, transition intensities, pressure dependences, and energy levels, with associated critically reviewed assignments and uncertainties, for all the main isotopologues of water. This article presents energy levels and line positions of the following singly deuterated isotopologues of water: HD16O, HD17O, and HD18O. The MARVEL (measured active rotational-vibrational energy levels) procedure is used to determine the levels, the lines, and their self-consistent uncertainties for the spectral regions 0-22708, 0-1674, and 0-12105cm-1 for HD16O, HD17O, and HD18O, respectively. For HD16O, 54740 transitions were analyzed from 76 sources, the lines come from spectra recorded both at room temperature and from hot samples. These lines correspond to 36690 distinct assignments and 8818 energy levels. For HD17O, only 485 transitions could be analyzed from three sources; the lines correspond to 162 MARVEL energy levels. For HD18O, 8729 transitions were analyzed from 11 sources and these lines correspond to 1864 energy levels. The energy levels are checked against ones determined from accurate variational nuclear motion computations employing exact kinetic energy operators. This comparison shows that the measured transitions account for about 86% of the anticipated absorbance of HD16O at 296K and that the transitions predicted by the MARVEL energy levels account for essentially all the remaining absorbance. The extensive list of MARVEL lines and levels obtained are given in the Supplementary Material of this article, as well as in a distributed information system applied to water, W@DIS, where they can easily be retrieved. In addition, the transition and energy level information for H217O and H218O, given in the first paper of this series [Tennyson, et al. J Quant Spectr Rad Transfer 2009;110:573-96], has been updated. © 2010 Elsevier Ltd.
SCOPUS: ar.j
info:eu-repo/semantics/published
Databáze: OpenAIRE