BV & BFV for the H-twisted Poisson sigma model I: Essential formulas and geometric interpretations

Autor: Ikeda, Noriaki, Strobl, Thomas
Přispěvatelé: Institut Camille Jordan [Villeurbanne] (ICJ), École Centrale de Lyon (ECL), Université de Lyon-Université de Lyon-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Institut National des Sciences Appliquées de Lyon (INSA Lyon), Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Université Jean Monnet [Saint-Étienne] (UJM)-Centre National de la Recherche Scientifique (CNRS)
Jazyk: angličtina
Rok vydání: 2020
Předmět:
Popis: We present the BFV- and the BV-extension of the Poisson sigma model (PSM) twisted by a closed 3-form $H$, i.e.\ of the HPSM. A novel feature in comparison to the standard PSM is that the superfield formulation of the BV- and the BFV-functionals needs terms containing the Euler vector field of the source manifold. Using an auxiliary connection $\nabla$ on the target manifold to globalize formulas, we obtain simple geometrical expressions for $S_{BFV}$ and $S_{BV}$ without the use of superfields, which seem new also for the ordinary PSM: The BV-functional of the HPSM, e.g., is expressed as the sum of its classical action, the Hamiltonian lift of the (only onshell-nilpotent) BRST-differential, and a term quadratic in the antifields which is essentially the basic curvature. This type of curvature measures the compatibility (in the sense of Blaom) of $\nabla$ with the Lie algebroid structure on $T^*M$ induced by the twisted Poisson structure.
Databáze: OpenAIRE