Bayesian Optimization in Reduced Eigenbases
Autor: | Gaudrie, David, Le Riche, Rodolphe, Picheny, Victor, Enaux, Benoit, Herbert, Vincent |
---|---|
Přispěvatelé: | École des Mines de Saint-Étienne (Mines Saint-Étienne MSE), Institut Mines-Télécom [Paris] (IMT), Groupe PSA, Laboratoire d'Informatique, de Modélisation et d'Optimisation des Systèmes (LIMOS), Ecole Nationale Supérieure des Mines de St Etienne-Université Clermont Auvergne [2017-2020] (UCA [2017-2020])-Centre National de la Recherche Scientifique (CNRS), Institut Henri Fayol (FAYOL-ENSMSE), Institut Mines-Télécom [Paris] (IMT)-Institut Mines-Télécom [Paris] (IMT), Département Génie mathématique et industriel (FAYOL-ENSMSE), Ecole Nationale Supérieure des Mines de St Etienne-Institut Henri Fayol, Centre National de la Recherche Scientifique (CNRS), PROWLER.io, 72 Hills Road, Cambridge, Ecole Nationale Supérieure des Mines de St Etienne (ENSM ST-ETIENNE)-Université Clermont Auvergne [2017-2020] (UCA [2017-2020])-Centre National de la Recherche Scientifique (CNRS), Ecole Nationale Supérieure des Mines de St Etienne (ENSM ST-ETIENNE)-Institut Henri Fayol, Gaudrie, David |
Jazyk: | angličtina |
Rok vydání: | 2019 |
Předmět: | |
Zdroj: | PGMO Days 2019 PGMO Days 2019, Dec 2019, Saclay, France |
Popis: | International audience; Parametric shape optimization aims at minimizing a function f(x) where x ∈ X ⊂ Rd is a vector of d Computer Aided Design parameters, representing diverse characteristics of the shap e Ω x . It is common for d to be large, d & 50 , making the optimization diffcult, especially when f is an expensive black-b ox and the use of surrogate-based approaches [1] is mandatory. Most often, the set of considered CAD shapes resides in a manifold of lower dimension where it is preferable to perform the optimization. We uncover it through the Principal Comp onent Analysis of a dataset of n designs, mapped to a high-dimensional shape space via φ : X → Φ ⊂ R D , D d . With a proper choice of φ , few eigenshapes allow to accurately describ e the sample of CAD shap es through their principal comp onents α α α in the eigenbasis V = [ v 1 ,..., v D ] ... |
Databáze: | OpenAIRE |
Externí odkaz: |