Transitions de phase dans les groupes aléatoires : sous-groupes libres et 2-complexes de van Kampen
Autor: | Tsung-Hsuan Tsai |
---|---|
Přispěvatelé: | STAR, ABES |
Jazyk: | angličtina |
Rok vydání: | 2022 |
Předmět: | |
Zdroj: | HAL |
Popis: | In this thesis, we study phase transitions in random groups at density. A random group at density d is defined by a presentation with m generators and 2m-1 powers dl random relations, where l is the maximal length of the relations. We have two main results: one on the free subgroup problem and the other on the existence of van Kampen 2-complexes. For any integer r between 1 and m-1, we find a phase transition at the density d(r) = min{1/2, 1-log(2r-1)/log(2m-1)}: If d>d(r), then the r first generators generate the whole group; if d Dans cette thèse, nous étudions les transitions de phase dans les groupes aléatoires à densité. Un groupe aléatoire à densité d est défini par une présentation avec m générateurs et 2m-1 puissance dl relations aléatoires, où l est la longueur maximale des relations. Nous avons deux résultats principaux : un sur le problème des sous-groupes libres et l'autre sur l'existence des 2-complexes de van Kampen. Pour tout entier r entre 1 et m-1, nous trouvons une transition de phase à la densité d(r) = min{1/2, 1-log(2r-1)/log(2m-1)} : Si d>dr, alors les r premiers générateurs engendrent le groupe entier ; si d |
Databáze: | OpenAIRE |
Externí odkaz: |