Multi Lyapunov Function Theorem Applied to a Mobile Robot Tracking a Trajectory in Presence of Obstacles
Autor: | Benzerrouk, Ahmed, Adouane, Lounis, Philippe, Martinet, Andreff, Nicolas |
---|---|
Přispěvatelé: | Laboratoire des sciences et matériaux pour l'électronique et d'automatique (LASMEA), Université Blaise Pascal - Clermont-Ferrand 2 (UBP)-Centre National de la Recherche Scientifique (CNRS), Institut Pascal (IP), SIGMA Clermont (SIGMA Clermont)-Université Clermont Auvergne [2017-2020] (UCA [2017-2020])-Centre National de la Recherche Scientifique (CNRS), Institut de Recherche en Communications et en Cybernétique de Nantes (IRCCyN), Mines Nantes (Mines Nantes)-École Centrale de Nantes (ECN)-Ecole Polytechnique de l'Université de Nantes (EPUN), Université de Nantes (UN)-Université de Nantes (UN)-PRES Université Nantes Angers Le Mans (UNAM)-Centre National de la Recherche Scientifique (CNRS) |
Jazyk: | angličtina |
Rok vydání: | 2009 |
Předmět: |
[INFO.INFO-AU]Computer Science [cs]/Automatic Control Engineering
[INFO.INFO-SY]Computer Science [cs]/Systems and Control [cs.SY] [INFO.INFO-RB]Computer Science [cs]/Robotics [cs.RO] [SPI.AUTO]Engineering Sciences [physics]/Automatic [INFO.INFO-AI]Computer Science [cs]/Artificial Intelligence [cs.AI] |
Zdroj: | European Conference on Mobile Robots (ECMR 2009) European Conference on Mobile Robots (ECMR 2009), Sep 2009, Dubrovnik, Croatia |
Popis: | International audience; — In this paper, a reactive control architecture based on hybrid systems (continuous/discrete) is used to control a unicycle mobile robot tracking a given trajectory while avoiding obstacles. The main motivation of using hybrid systems is the possibility to define the overall control scheme as a combination of several elementary controllers (trajectory tracking, obstacle avoidance) that stability can be easily proved. However, there is a serious risk of oscillatory switching or even instability caused by random switch between these two elementary controllers. The contribution of this paper is to use the multiple Lyapunov functions (MLF) theorem to prove the global stability of a trajectory tracking task in presence of obstacles. To satisfy the MLF conditions, we propose to introduce a third controller in the architecture of control: the go-to-goal controller. Its role is to satisfy the second and the most difficult condition of MLF in a finite time. The approach is validated by numerical simulation. |
Databáze: | OpenAIRE |
Externí odkaz: |