Autor: |
Alawieh, Hiba, Wicker, Nicolas, Biernacki, Christophe |
Přispěvatelé: |
Laboratoire Paul Painlevé - UMR 8524 (LPP), Université de Lille-Centre National de la Recherche Scientifique (CNRS), MOdel for Data Analysis and Learning (MODAL), Inria Lille - Nord Europe, Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Laboratoire Paul Painlevé - UMR 8524 (LPP), Université de Lille-Centre National de la Recherche Scientifique (CNRS)-Université de Lille-Centre National de la Recherche Scientifique (CNRS)-Evaluation des technologies de santé et des pratiques médicales - ULR 2694 (METRICS), Centre Hospitalier Régional Universitaire [Lille] (CHRU Lille)-Université de Lille-Centre Hospitalier Régional Universitaire [Lille] (CHRU Lille)-Université de Lille-École polytechnique universitaire de Lille (Polytech Lille)-Université de Lille, Sciences et Technologies |
Jazyk: |
angličtina |
Rok vydání: |
2019 |
Předmět: |
|
Popis: |
Visualization of high-dimensional and possibly complex (non continuous for instance) data onto a low-dimensional space may be difficult. Several projection methods have been already proposed for displaying such high-dimensional structures on a lower-dimensional space, but the information lost is not always easy to use. Here, a new projection paradigm is presented to describe a non-linear projection method that takes into account the projection quality of each projected point in the reduced space, this quality being directly available in the same scale as this reduced space. More specifically, this novel method allows a straightforward visualization data in R 2 with a simple reading of the approximation quality, and provides then a novel variant of dimensionality reduction. |
Databáze: |
OpenAIRE |
Externí odkaz: |
|