SVM-based learning method for improving colour adjustement in automotive basecoat manufacturing

Autor: Ruiz Vegas, Francisco Javier, Agell Jané, Núria, Angulo Bahón, Cecilio
Přispěvatelé: Universitat Politècnica de Catalunya. Departament d'Enginyeria de Sistemes, Automàtica i Informàtica Industrial, Universitat Politècnica de Catalunya. GREC - Grup de Recerca en Enginyeria del Coneixement
Jazyk: angličtina
Rok vydání: 2009
Předmět:
Zdroj: UPCommons. Portal del coneixement obert de la UPC
Universitat Politècnica de Catalunya (UPC)
Recercat. Dipósit de la Recerca de Catalunya
instname
Popis: new iterative method based on Support Vector Machines to perform automated colour adjustment processing in the automotive industry is proposed in this paper. The iterative methodology relies on a SVM trained with patterns provided by expert colourists and an actions’ generator module. The SVM algorithm enables selecting the most adequate action in each step of an iterated feed-forward loop until the final state satisfies colourimetric bounding conditions. Both encouraging results obtained and the significant reduction of non-conformance costs, justify further industrial efforts to develop an automated software tool in this and similar industrial processes.
Databáze: OpenAIRE